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Chapter 13: Neural Maps: Their Function and Development

Lecture 13.3 Mechanistic Models

Reading Assignments

From the Textbook
Section 13.5

Suggestions for Further Reading
GCAL model: Bednar (2012), Stevens et al. (2013)
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● SOM models are useful because they reproduce many of the different map 
patterns observed in the primary visual cortex using a simple approach.

● SOM is primarily a phenomenological or geometrical model—it focuses on the 
geometry and principles, not the neural mechanisms.

● Many of the mechanisms of the SOM have no counterpart in biological 
systems (e.g., initial full connectivity, initial long lateral interactions, and global 
selection of a single winning neuron); perhaps the chemoaffinity mechanisms 
provide a more practical solution to these issues.

● We next consider a class of mechanistic map models that develop similar map 
patterns as SOM, using similar underlying principles.

● These models start from an initial state assumed to be determined through 
chemoaffinity, and then show how feature map patterns can develop using 
mechanisms like those found in biological neural maps.

Q3: How do feature maps arise from neural mechanisms?
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Mechanistic feature map models

● Typically allow natural image inputs, so that the models can be tested with 
actual images and with patterns used in animal and human experiments.

● Start with topographic connectivity initially, both to model chemoaffinity 
mechanisms and to avoid having to have unrealistic full connectivity and 
shrinking lateral interactions.

● Use local neuron learning rules established from biological experiments.
● Use explicit connections, typically recurrent, instead of global supervisors 
“picking winners”.

● Allow multiple active areas in the cortex.
● Typically allow specific patterns of lateral connectivity between neurons, to 
match the observed patchy connectivity and feature-specific contextual 
modulation effects.

● Once the models reproduce the types of map patterns observed in abstract 
models like SOM and the Elastic Net, the models can be tested with realistic 
input patterns to see how they actually behave during visual tasks. 
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GCAL model of neural maps

● Subcortical pathway is hardwired and fixed throughout the simulation.
● All other connections to and within cortical areas:

●  are topographically localized (e.g., set up by chemoaffinity mechanisms),
● are stored explicitly per neuron (not as a shared neighborhood function),
● are initially isotropic or random, and
● adapt by Hebbian learning (coactive units get stronger connections).

● We next examine the GCAL 
mechanistic model of the type 
of map-formation processes 
modeled by SOM.

● Basic early vision model 
takes synthetic or natural 
image inputs and simulates 
subcortical and V1 processing.
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Basic GCAL model architecture

● V1 has afferent, lateral inhibitory, and lateral excitatory connections.
● Initial V1 response to the On and Off input is a blurred image.
● Mexican-hat lateral interactions iteratively focus response into “bubbles”. 
 (as in SOMʼs neighborhood function, but not restricted to one “winner”).

● Connections, where present, are then strengthened between all active units.
● Eventually V1 neurons represent the input space, as in SOM.

Model for retinotopy and 
orientation:

● Images are convolved with 
On and Off RGC/LGN 
difference-of-Gaussian RFs.

● On and Off channels have 
lateral inhibition for gain 
control (normalization).
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Comprehensive GCAL model architecture

● Can now develop preferences for retinotopic location, orientation, spatial 
frequency, color, motion direction, eye, and disparity.

● Final map preferentially weights inputs to each V1 L4 neuron from each 
subcortical pathway, which determines its preferred input patterns.

More complex GCAL variants 
follow same basic equations but 
can have multiple

● input sheets                         
(here 2 eyes, 3 cone types)

● On and Off channels             (2 
sizes, 3 cone opponencies)

● V1 cell populations              (2 
layers, separate inhibitory/ 
excitatory cells)
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GCAL model activation

● There are four sources of incoming activity:
● The relative strength of these sources is set using the      parameters to 
balance afferent vs. lateral and excitatory vs. inhibitory inputs.

● The weighted sum of all inputs is then passed through a threshold 
nonlinearity    , and the activity is recomputed until it settles; the local 
lateral excitation and longer-range inhibition results in focused bubbles.

● For a given input pattern, the activation 
of the On and Off channels is computed 
as a convolution with a difference of 
Gaussians kernel, as in lecture 1, slide 8.

● The activation        of neuron              is 
computed from the incoming activity        
           multiplied by the weights          :
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GCAL model learning

● The remaining weights then decrease, because all weights of a given type 
(afferent, lateral excitatory, or lateral inhibitory) are normalized to a 
constant sum.

● Afferent weights to neurons in active bubbles learn the pattern on the input 
within their connection field.

● Lateral weights store correlations between V1 neurons.

● Once activity settles, all V1 connections 
are adjusted by Hebbian learning:

● Weights increase for connections with 
pre- and post-synaptic activity.
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GCAL results: Animal and model V1 maps, I

GCAL model orientation, ocular dominance, and direction maps closely 
resemble animal maps, achieving good coverage of the input dimensions.
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GCAL results: Animal and model V1 maps, II

Properties of experimental maps for spatial frequency, color, and disparity 
are much less clear, but GCAL results seem comparable.
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GCAL results: Lateral connections

(a) Lateral connections in 
animals follow the shape of the 
orientation map.

(b) Hebbian-learned-model 
lateral connections do as well.

(c–d) The same connections also 
respect all other maps, e.g., 
ocular dominance and motion 
direction.

The lateral connections link by 
similarity in the response 
properties, for the full 
multidimensional input space. 
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Functional phenomena in mechanistic models

● Once the maps have formed, neurons in GCAL have receptive fields 
determining their response to isolated input patterns, and lateral connectivity 
determining how active neurons will interact.

● The behavior of these mechanisms can then be tested by running simulated 
psychophysical or physiological experiments.

● For instance, the patchy lateral connectivity leads to surround modulation 
effects, where neighboring visual elements interact via cortical circuitry to 
affect how they are perceived.

● Similarly, changes in these connections during visual experience leads to 
realistic visual aftereffects, such as the tilt aftereffect and the McCollough 
effect.

● The model would need to be extended to account for feedback effects from 
higher cortical levels. 
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