Chapter 13: Neural Maps: Their Function and Development

Lecture 13.4 Normative Models and Conclusion

Reading Assignments

From the Textbook
Section 13.6-13.9

Suggestions for Further Reading
Normative models: Olshausen & Field (1996), Hyvarinen & Hoyer (2001)
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O4: What is the information-processing goal of
neurons in maps?

* Previous slides focused on how initial topography 1s formed, where feature
map patterns come from, mechanistic models of these processes 1n animals,
and detailed tests and predictions of these models.

 The models suggest some aspects of map function as well:

 Maps provide good coverage of a multidimensional input space.

e Lateral correlation via feature-specific connectivity helps to decorrelate neural
responses.

* Contextual modulation reveals the effects of this specific connectivity.
* Aftereffects reveal short-term adaptation of this specific connectivity.

e Crucially, these models start from the mechanisms, so function can only be
inferred indirectly.

e For a different class of normative models considered 1n the following section,
functional criteria form part of the model itseli—the models are derived from a
stated objective, with a given neural mechanism as a specific example.
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Generative models with latent variables

* Why would we want a map-like collection of
neurons, with their specific set of visual
response properties?

* One explanation: visual cortex maps form a
generative model for images.

* Given an observed image x, each map neuron responds with
activity c such that the c-weighted sum of each weight (basis) L ~ E C;U;
vector v can approximate Xx: i

e The set of ¢, coefficients models the latent variables (in the world) giving rise to that
image, as estimated by the brain of the observer.

e The real latent variables are objects and light sources, but inferring all of that
structure 1s neither tractable nor necessary for most visual tasks.

e Inferring causes for small patches of images 1s more tractable but still ill-posed, so it
requires additional assumed constraints.
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Sparse generative models for images

* Generative model parameters are typically
set by optimizing an objective function, e.g.,
requiring low reconstruction error and high
sparsity on ¢ (such that mostC; are zero).

* If c 1s sparse, the activity of a few V1 neural

responses will suffice to represent the image.
e Sparse representations reduce metabolic requirements and could be useful
for further processing.

* Extreme example: Require .. — () for all but one index 7 (winner-take-all).
e Effectively clusters the input patches, which does form V1-like Rfs.
* Reconstruction error would be high from such an approach, though.

* More biologically meaningful approach allows multiple neurons to
respond, forming a faithful componential representation of the mput.
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Reconstruction of an image patch from basis vectors
16 k=64 k=392
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* Basis vectors approximating V1 neurons can be activated in combination to
represent an image patch as a weighted sum.

 With this basis set developed to optimize sparsity, even just 4 or 16 active
units gives a faithful representation of the 196 pixels in this image patch.
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Developing basis vectors for image patches

* How are these basis vectors constructed?

* Olshausen & Field (1996) model objective
function-

@z — Z ¢iv;|* + AZQ(O&')

1

» The model iteratively minimizes the reconstruction error & — ) _ c;v;|?
and a penalty function 9 (¢i), balanced with A . 75

» This non-neural process involves estimating the coefficients { ¢; } that
best explain a given training image, then updating the basis vectors V; to
minimize the reconstruction error.

* Alternative implementations are more easily related to neural
mechanisms, but this formulation explicitly identifies what the network 1s
trying to achieve: good reconstruction from a small number of active units.
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(a) Macaque (b) (Olshausen & Field, 1996) (c) SSC

(a) Macaque RFs (here fitted with Gabors) span a wide range of shapes.
(b) Original Olshausen model projective fields do not, but
(c) They can with a different sparseness criterion.
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Discussion

* A wide variety of map models have been proposed, addressing different
aspects of map function and development:
* Chemoaffinity models of topographic mapping
* Geometrical models of multidimensional feature spaces
* Mechanistic models of feature map development
* Mechanistic models of visual phenomena
* Normative models expressed in information-processing goals

* Complete explanations would address all these aspects consistently, but
important gaps and some minor conflicts remain among all of these
approaches.

* Explanations of why map patterns should be smooth and what functional
purpose 1s served by the specific map patterns remains speculative.

* Whether the map patterns themselves serve a function or not, the patterns
do provide important constraints for models of map development, as they
reflect the underlying function-related circuitry.
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Conclusions

* Neural maps are ubiquitous but diverse.
* Many neural maps are topographic, mapping the sensory surface.

* Topography is established under genetic control, with activity-based
refinement.

* Maps for other features appear to develop as a result of neural activity.

* Geometrical models suggest that feature-map patterns result from folding a
multidimensional mput space onto a 2D cortical space.

* Mechanistic implementation of such dimensionality reduction can explain
lateral connectivity, contextual modulation, and aftereffects.

* Normative models suggest that neurons uncover latent causes in sensory
inputs, forming a sparse representation suitable for further computation and
action.

* Future work can focus on the relationships between geometrical,
mechanistic, and normative models of maps.
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