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Lecture 12.1

» This lecture gives an overview of early vision and basic concepts.
» We discuss how vision can be divided into low-, mid-, and high-level vision.

> We discuss the visual areas and their properties.



Visual phenomena

» These lectures cover many visual phenomena.

> We recommend Prof. Michael Bach's website,
http://michaelbach.de/ot/ for many fascinating demonstrations of
these phenomena (with explanations).

» We suggest (1) Hidden Figures, (2) Rotating Face Masks, (3) Ames
Window, (4) Neon Color Spreading, (5) Dress Code Enigma, (6) Adelson’s
" Checker Shadow" lllusion, and (7) Biological Motion.

> In addition, we encourage you to familiarize yourself with IPython
Notebook in preparation for the interactive demos in later sections by
going to website: http://www.nature.com/news/
interactive-notebooks-sharing-the-code-1.16261.


http://michaelbach.de/ot/
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261

What is

vision?

Vision is the process of extracting information from light arriving at the
retina.

Humans can estimate a rough approximation of the three-dimensional
scene that has generated the image.

Humans can rapidly attend to different regions of the scene and ignore the
rest.

Vision is also used to enable actions, such as grasping objects or
determining where to put your feet while hiking.

In summary, vision performs a range of visual tasks that extract
information from the scene in order to achieve goals.



Extracting information from images

Figure 1 : (A) Humans can extract a lot of information from a single image. For
example, “There is a young fox emerging from behind the base of a tree not far
from the viewpoint; it is heading right, stepping through short grass and moving
quickly. Its body fur is fluffy, reddish-brown, light in color, but with some variation.
It has darker colored front legs and a dark patch above the mouth. Most of the
body hairs flow from front to back.” (B.) Images are locally ambiguous. These two
patches correspond to small parts of the fox’s back and the side of the tree, see red
circles in (A), but are highly ambiguous without context.



Vision is extremely difficult

» This is perhaps surprising because humans find it very easy.

» But this is only possible because a very large part of your brain is involved
in doing vision. It is estimated that roughly 40% of neurons in the cortex
are involved in visual processing.

> Despite decades of work, current machine vision systems perform
significantly worse than humans, except for a few highly specialized tasks.

» But probably most other animals, except monkeys and our other close
relatives, get far less information from vision, judging by the much smaller
numbers of neurons they devote to vision.



Why is vision hard?

> The input to a visual system is the intensity patterns caused by the
number of photons, or magnitude of light rays, that are imaged at
different positions in the retina.

» The human visual system must decode these intensity patterns and
determine that they are caused, for example, by a fox emerging from
behind a tree.

> These tasks are particularly complex because the intensity patterns will
change significantly if we make small changes to the visual scene. The
patterns will vary greatly if we alter the pose of the fox, the lighting
conditions, the viewpoint of the observer, and how much the fox is
occluded by the tree.

> It is hard to perform visual tasks, such as segmenting the image into
regions corresponding to different objects, performing object recognition to
determine that a region of the image corresponds to a fox and another
region to a tree, or performing depth estimation to determine the positions
of the objects in the visual scene.



The image and the raw input

Figure 2 : Why is vision hard? The raw input to the fox image (left panel) is the
intensity values plotted as a function of spatial position (right panel). These intensity
patterns vary depending on the pose of the fox, the lighting conditions, and other

factors. The human visual system must decode this raw input, which is extremely
difficult.




The complexity problem

» The main challenge of vision is the enormous complexity of natural
images, and their local ambiguities.

» The number of possible images, or intensity patterns, that can be
described by a small image array with 100 x 100 positions, or image pixels,
is (256)'%:°% which is astronomically large (Kersten, 1987).

> These images are caused by the very large number of possible objects,
which can be arranged in a scene and illuminated in an enormous number
of different ways.

» Vision performs the inverse inference task of determining the scene from
the image.

> It is almost miraculous that humans can simply open their eyes and
recognize objects and visual scenes within a few hundred milliseconds (the
time it takes to blink an eye).



Natural/ecological constraints

» To perform visual tasks, the visual system must be able to detect and
exploit regularities in image patterns.

» These regularities include the assumption that surfaces are generally
spatially smooth, that objects tend to move rigidly, that most scenes
contain a ground plane, and that objects touch the ground plane at
contact points. These assumptions have been called ecological, or natural,
constraints (Gibson, 1986; Marr, 1982).

» It is speculated that humans have learned to exploit the structure of
natural images and the world through evolution (Glenn-Northcutt &
Kaas,1995), early development (Kellman & Arterberry, 2000), or by
learning later in life (Green & Bavelier, 2008).

> Vision science researchers can learn these image regularities by applying
machine learning methods to image data sets.



Natural constraints and flying carpets

Figure 3 : This image gives the illusion of a flying carpet, where the woman on the
towel is perceived to be floating above the beach. The illusion shows that humans use
constraints — about ground planes, shadows, and contact points — to interpret images.
But in this case, the constraints are violated, because we incorrectly think that the
shadow is being cast by the towel, rather than by a flag outside the image.




How is vision studied?

» Vision is studied in three related ways:
1. at the “behavioral” level, by studying how well humans, and other
animals, can perform visual tasks
2. at the “neural” level, to understand the neural mechanisms (by
electrode recording or by non-invasive methods like fMRI)
3. at the “computational” level, by designing mathematical models and
computer vision algorithms that can perform visual tasks

» Some mathematical models of vision attempt to describe how humans or
other animals see and account for behavioral or neural data. By contrast,
the goal of computer vision is to perform visual tasks without attempting
to model how humans or other animals perform them. But both must
address similar visual tasks and deal with the complexity of image patterns.



Simplifications

> The visual system is so complex that vision scientists must make
simplifications to break it down into manageable pieces. We will question
these throughout the lectures.

> They include:
1. studying visual tasks in isolation instead of addressing the complete
visual system
2. simplifying the visual stimuli
3. simplifying the models of neurons and neural circuits
4. simplifying the overall structure of the visual areas of the brain and how
they interact with each other

» Vision researchers break vision down into different visual tasks that can be
studied separately. These tasks include image segmentation, depth
estimation, and object recognition. They are performed by modules that
output representations. Modules, however, might not be localized to
distinct parts of the brain.



Marr’s framework for vision

> Marr's framework (Marr, 1982) illustrates how visual tasks can be studied
in isolation. He proposed that the visual system uses modules to compute
a sequence of representations of the image.

» This starts with a primal sketch of the image; proceeds to a 2 — 1/2-D
sketch which represents the three-dimensional structure of the scene; and
concludes with a 3-D representation of objects.

» The modules interact by outputting representations that are used as inputs
to other modules. Marr's framework captures important aspects of the
visual system. It also classifies visual tasks into:

1. low-level vision, which processes the image (e.g., produces the primal
sketch)

2. mid-level vision, which estimate the structure and properties of
geometric surfaces (e.g., produces the 21/2-D sketch)

3. high-level vision, which recognizes objects and analyzes scenes.



Marr's framework illustration
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Marr's framework for vision (left panel) consists of a series of
representations. Visual tasks can be classified into low-, mid-, and high-level tasks
(right panel), which roughly corresponds to Marr’s framework.




Simplification of stimuli

> The set of visual stimuli is so large that it is impractical to study visual
systems behaviorally by their response to all stimuli.

» When studying specific visual tasks, it is sensible to use only stimuli that
contain information, or visual cues specific for these tasks. Good
experimental design requires controlled stimuli so that the difficulty of
performing a specific task can be quantified in terms of varying a small
number of variables.

» For these reasons the study of vision is often simplified by using synthetic
stimuli. For example, the ability of humans to perceive depth from Julesz's
random dot stereograms (Julesz, 1971) demonstrates that humans can
perceive depth when objects are not present, see figure (5).

» But too much reliance on synthetic stimuli can be misleading, and there is
concern that experimental findings on synthetic stimuli may not generalize
to human, or mammalian, abilities in more natural situations (Carandini,
2005; Yuille & Kersten, 2006).



Example of simplified stimuli

Figure 5 : Binocular stereo of the fox for real images and for Julesz's random dot
stereograms. The left two images are a stereo pair (the left and right images) of a fox;
when fused (e.g., by a stereo viewer presenting the left and right images to the right
and left eyes, respectively), the images yield the three-dimensional shape of the fox.
The right two images are stereo pairs of random dot images of a fox. When fused,
they also give the three-dimensional shape of the fox.



Simplified models of neurons and neural circuits

» Simplifications must be made when modeling neurons and neural circuits.
The integrate-and-fire model is standard, but real neurons are more
complicated. They may signal information by a sophisticated “neural
code” involving the precise timing of action potentials.

» There are wide varieties of neurons that differ in their anatomy and
function. There is also evidence that neural circuits can behave differently
in different situations.

» The numbers of neurons involved in visual perception is extremely large.
This means that simplifications need to be done when studying the overall
structure of visual areas of the brain and how they relate to each other.
We do not yet have wiring diagrams describing the connections between
neurons within each visual area.



Low-, mid- and high-level vision

> Low-level visual tasks estimate local properties of the image. They include
finding the boundary of an object (without deciding what the object is)
and estimating the motion flow.

» Mid-level visual tasks estimate properties of geometrical surfaces, the
shape and position of surfaces in the visual scene, and their depth ordering.

» High-level visual tasks estimate properties of objects, scene structures,
relationships between objects, and actions of objects.

> In addition, each level provides information that is passed on to the next
level, as illustrated by Marr's theory.

» This organization can be thought of in terms of the knowledge available at
each level. Low-level vision knows only about image patterns. Mid-level
knows about geometric surfaces. High-level knows about objects. The flow
of information from low- to high-level vision is from generic to specific.



Low-level vision

> Low-level vision includes tasks such as detecting edges, performing
segmentation, and extracting representations of image patterns that can
be used for higher-level processing.

> Low-level vision can exploit statistical properties of images that are true
for most images (e.g., that images tend to be piecewise smooth).

> Low-level vision also includes estimating the local motion of images by
finding the correspondence between points in images taken at different
times. This is done by matching regions that have similar intensity
properties.



Low-level vision: Edge detection

Figure 6 : The edges of the fox image (left panel) detected by low-level processing
(center panel). Some edges lie on the boundary of objects, like the fox and the tree,
while others are due to properties of the textures (e.g., the grass or the bark of the
tree). It is difficult to distinguish between these different types of edges. The church
steeple (right panel), and the position of its edges, is obvious if you view the whole
image, but almost impossible to see locally because there is no strong local evidence
for the edges of the steeple. This shows that sometimes edge detection is impossible
except when done in conjunction with object detection, as when low-level vision
proposes many possible edges that are validated, or rejected, by object models.



Low-level vision: Aperture problem

Z

Figure 7 : These images show black and white bars, whose true motion is leftward,
viewed through two apertures (circular and rectangular). But the motion is locally
ambiguous because we can directly observe only the motion component normal to the
bars (we cannot detect any motion tangential to the bars), and so the observed stimuli
is consistent with many possible motions. The human visual system uses constraints
to resolve these ambiguities. For these stimuli, humans assume that the motion is as
slow as possible and hence is perpendicular to the bars (assuming that the
unobservable tangential component is zero), as indicated by the apparent motion.
More generally, humans tend to assume that motion is slow and smooth.
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Interactions between low and higher level vision

> Although low-level vision can be studied in isolation there is evidence that
it interacts strongly with higher-level vision.

» For example, using low-level processing alone, it is usually impossible to
detect the edges of the objects in an image without making mistakes.

» The dalmatian dog illusion demonstrates how the extreme ambiguity of
low-level cues for edges make it very hard to detect the dalmatian (see
http://michaelbach.de/ot/cog_dalmatian/).


http://michaelbach.de/ot/cog_dalmatian/

Mid-level vision

> Mid-level visual processing involves geometry, materials, and lighting but
not specific objects or scene structures. For example, mid-level vision
"knows" about surfaces of red metal, but not about red cars.

> Mid-level vision includes inferences about depth ordering of surfaces and
reasoning about how surfaces can partially occlude each other. The
Kanizsa triangle, on the next slide, shows that humans can perceive
occluding surfaces even if there is little local evidence for them.

» The Kanizsa triangle is an example of Gestalt grouping phenomena, many
of which can be explained in terms of a human tendency to interpret
images as simple geometric structures (Kanizsa, 1979).



Mid-level vision: Kanizsa triangle
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Figure 8 : The Kanizsa triangle (left panel) is perceived as a white triangular surface
that partially occludes three black disks. It shows the tendency of humans to interpret
images in terms of geometric structures. Another example of this (right panel) shows
that human tend to “explain away” gaps in the black band by positing a white band
lying sometimes above and sometimes below the black band. For an interesting
variant, see http://www.michaelbach.de/ot/cog-kanizsa/, which shows how the
effect can disappear if other cues are present.


http://www.michaelbach.de/ot/cog-kanizsa/

Mid-level vision: Flying carpet

> In this interpretation, the visual system assumes that most images contain
a ground plane with objects standing on it (e.g., a man standing on a
lawn). The contact points of the objects with the plane specify the
positions of the object in the scene. This is based on assumptions about
geometry alone without requiring any knowledge of specific objects.

» This relates to shape from perspective. By the laws of perspective
projection, if there are parallel lines in the image (such as the tracks of a
railway line), then the projection of these lines in the image will converge
at a vanishing point.

» Humans can use vanishing points to estimate the orientation of the ground
plane. More information about the scene can be extracted if the image
contains several vanishing points corresponding to surfaces that are
orthogonal in space.



Mid-level vision: Binocular stereo

» Binocular stereo is another vision module, which estimates the depth and
orientation of surfaces. Humans have the ability to get depth from two
eyes — hence the popularity of so-called 3D movies.

» This requires solving a correspondence problem between features in the
two eyes which are caused/imaged by the same point in space. If
correspondence can be performed, then the depth can be estimated by
trigonometry. The correspondence problem is made easier byf the epipolar
line constraint, which means that corresponding points require only
searching in a one-dimensional direction.

> But knowledge of the epipolar lines requires knowing the direction of gaze
of the cameras (maybe done by feedback from muscles controlling the
eyes, or by calibration). Note that partial occlusion can happen, when part
of the scene is visible to one only eye. Da Vinci was the first to point out
that this was a useful visual cue.



Mid-level vision: Stereo figure

€ (0N

R

Left view Right view

Figure 9 : Stereopsis and epipolar lines. A point X in three-dimensional space gets
projected onto positions x; and xg in the left and right eyes. This uses a pinhole
camera model of each eye, where the eye is specified as a plane (in grey), and O and
Og represent the centers of projection. All points on the plane defined by O, Og, and
X get projected onto straight lines & and €g, the corresponding epipolar lines, in the
two eyes, as shown by the projections of x1, x2, x3 onto the right eye. If we alter the
position of the point X in space, then we will get a family of corresponding epipolar
lines. The epipolar line constraint states that points on an epipolar line in one eye can
only be matched to a point in the other eye on the corresponding epipolar line.



Mid-level vision: Other visual cues

» Humans can also get three-dimensional shape information about surfaces
from shading, texture, and even contours.

» Shape from shading assumes a model, usually Lambert’s law (Basri,
2003), for how the image is formed in terms of the lighting and the shape
of the viewed object. In some conditions, this can be inverted to estimate
the shape of the object from the intensity patterns, which is called shape
from shading (Basri, 2003).

» Shape from texture arises if a surface has a regular pattern of texture.
This pattern will be distorted by the shape of the object, which enables
the shape of the surface to be estimated from the intensity patterns by
shape from texture (Knill, 2001).

» Finally, certain contours naturally suggest shapes, which is called shape
from contour (Knill, 2001).



Mid-level vision: Shape and shading

Figure 10 : Shape from from and shape from shading are coupled. The shapes of the
contours affect the perception of the shading patterns. The intensity patterns are the
same in both stimuli but the shape of the boundaries makes the perception of shading
different in the two cases (Knill & Kersten, 1991).



Visual cues

» These vision modules depend on specific properties of images called cues,
for example, the shadow on the sand in figure (3).

» These modules, and the visual cues they rely on, can be modeled and
studied separately, but they are often coupled. For example, Knill and
Kersten (1991) illustrate that shape from contour can alter the perception
of shading patterns and material properties, as we saw in the previous slide.

> The complexity of image formation often makes it hard to decouple visual
cues. Under certain lighting conditions, it is even difficult to tell the color
of an object being viewed (see
http://michaelbach.de/ot/col-dress/).

> There are also interactions between mid-level and high-level vision. For
example, humans perceive an inverted (i.e., concave) face mask to be a
normal convex face even when binocular cues are present (see
http://michaelbach.de/ot/fcs_hollow-face/).


http://michaelbach.de/ot/col-dress/
http://michaelbach.de/ot/fcs_hollow-face/

The visual system and the brain

» This section is a brief overview of what we know about how the brain does
vision.
> It reviews the areas of the brain that perform visual processing, the

relationships between them, the structures of these areas, and the visual
tasks they perform.

» Because of the complexity of the visual system our knowledge of these
issues, though considerable, is limited.

» It is based on a combination of anatomical studies, electrophysiological
recordings, and noninvasive imaging methods such as functional magnetic
resonance imaging (fMRI).



The retina

> Visual neural processing begins with the retina, which transmits
information to the visual cortex via the lateral geniculate nucleus (LGN).
The anatomy and electro-physiology of the retina and LGN have been
studied in detail (Merigan & Maunsell, 1993; Gollisch & Meister, 2010;
Briggs & Usrey, 2011).

» The retina converts intensity patterns — the light rays that reach the retina
— into patterns of neural activity. This starts with photoreceptors which
are directly activated by light and are efficient at “capturing” photons
(Rieke et al., 1997).

> The remaining set of neurons in the retina, in particular ganglion cells,
process the photoreceptors output and encode it for transmission via the
optic nerve to the rest of the brain.

> The retina functions as a sophisticated camera that captures the
information in the incoming images and encodes it so that it can be
transmitted to the visual cortex, but eye movements means that the retina
is not a passive device and instead actively searches for information, see
Zhaoping (2014).



The challenges of the retina

> The retina faces two challenges:
1. the enormous variability of intensity in natural images

2. the ability to encode the images so that they can be transmitted
efficiently and robustly

> Neural models of the retina are largely motivated by these challenges.



The dynamic range of images

» The intensity of natural light varies enormously from faint starlight to
bright sunlight, with intensity magnitudes ranging from 1 to 10°.
Moreover, the changes of intensity within specific images can also vary
hugely (Demb, 2002).

» But neurons have limited ranges of response, and hence they cannot
encode these huge ranges of intensity. Hence many theories of the retina
propose that the ganglion cells perform gain control and filter the images
so that they capture only the local contrast — the differences of intensity
between nearby parts of the retina — and hence reduce the need to
represent the entire intensity range.

> Observe that digital cameras perform similar functions, since they convert
incoming light patterns into digital representations where the intensity
only takes 256 values, from 0 to 255 (in each color channel).



Encoding information

» The retina must encode the image information so that it can be
transmitted through the optic nerve to the rest of the brain for further
processing. The image information is transmitted through a relatively
small number of fibers in the optic nerve (compared with the number of
photo-receptor cells).

> Information theory offers guidelines for how information can be encoded
efficiently based on statistical knowledge of the stimuli. Researchers have
applied this theory to predict retinal properties with some success, but this
work is out of scope of this lecture (Zhaoping, 2014).



The complexity of the retina

» Theories of the retina illustrate the “simplification issues” which re-occur
throughout the chapter and these lectures. At the computational level, the
theories for describing how the retina deals with intensity are simpler than
the engineering methods used by computer vision and image processing
researchers who deal with the same challenges.

» At the experimental level, many of the findings about retinal neurons are
based on simplified models of neurons obtained from studying their
responses to synthetic stimuli. Moreover, despite considerable knowledge
of the anatomy, only recently have studies of detailed wiring diagrams and
characterization of fifty or more anatomical types of neurons (Masland &
Martin, 2007).

> |t is also unclear why so many neurons are required to overcome the two
challenges. Indeed it has been argued that the retina is considerably
“smarter” than current theories suggest (Meister & Berry, 1999; Gollisch
& Meister, 2010) and may require detecting motion, expansion,
extrapolation, and more generally adapting to the complexity of image
patterns.



The LGN

» The output from the retina is transmitted to the LGN and then to the
visual cortex, where it arrives in visual area V1.

» The LGN is generally believed to have limited function as a way station on
the route to the visual cortex. Hence current models of LGN neurons are
fairly simple.

» But there is reason to believe that LGN is more complex. For example,
there is substantial feedback from V1 to LGN (Briggs & Usrey, 2011) as
well as connections between LGN and other areas aside from V1 (Sherman
& Guillery, 2002; Nassi et al., 2006).



Cortical visual areas and the relationships between them

> The visual cortex can be decomposed into a number of visual areas based
on anatomical and electrophysiological measurements (Van Essen et al.,
1992). The visual areas V1, V2, V4, medial temporal (MT), medial
superior temporal (MST), and the inferior temporal cortex (IT) are
illustrated in the figure on the following slide. It is common to concentrate
on two hierarchical streams:
1. The ventral stream consists of V1, V2, V4 (the functional organization
of V3 has been under some debate), and the infero-temporal (IT) areas of
extrastriate cortex. This pathway is believed to perform object detection
and scene understanding.
2. The dorsal stream goes from V1, MT, to the parietal cortex. It is
believed to be used for analysis of the movements and positions of objects
as they relate to navigation and actions (Milner & Goodale, 2006).

> Although the distinction between ventral and dorsal pathways is well
established (Lennie, 1998), this is probably a simplification (Schenk &
Mclntosh, 2010).



Schematic of the visual cortex

Figure 11 : Left panel (top and bottom) illustrate the monkey visual cortex. The
right panel is a schematic of connections between visual cortical areas in the macaque
monkey brain. The colored rectangles represent visual areas (see Felleman & van
Essen, 1991). The black lines show the connections between areas, with the thickness
proportional to the number of feedforward fibers. Areas in cool and warm tones
belong to the ventral and dorsal streams, respectively. (Wallisch & Movshon, 2008;
Lennie, 1998).



Sizes of visual areas

> The size of the visual areas varies greatly.

> The first two areas, V1 and V2, are enormous and together account for
roughly 70% of the number of neurons in the visual cortex (hence 30% of
the neurons in the entire cortex). The number of neurons in V1 is much
higher, by a factor of at least two hundred, than the number of fibers that
leave the eye.

> Indeed it has been estimated that this is more, by a factor of several
hundred, than the amount needed to represent the information conveyed
by the LGN (Lennie, 1998), consistent with the idea that the purpose of
V1 is to start interpreting the image instead of simply encoding it.

> Another major feature of the hierarchy of visual areas is that their size
gets progressively smaller as they rise in the hierarchy. For example, V4 is
much smaller than V2, and visual areas within IT are considerably smaller
than V4.



Structural organization: Retinotopy

> Electrophysiology studies the response of neurons to synthetic stimuli with
different perceptual dimensions, such as position, orientation, color,
texture, shape, sensitivity to input from both eyes, and motion.

> Neighboring neurons in early visual areas usually respond to similar regions
of the image. These areas are roughly retinotopic in the sense that their
spatial organization is similar to that of the image at the retina, with a
spatial transformation (Schwartz, 1980).

» This retinotopic structure is strongest in V1 and V2 and gets weaker at
high visual areas. Neurons are often classified by how they are tuned to
specific perceptual dimensions. But neurons in V1 respond to several
dimensions (Lennie, 1998), and classification is challenging in higher areas
(Roe et al., 2009; Roe et al., 2012).

» Mapping with optical techniques (Lu & Roe, 2007; Kinoshita et al., 2009)
has shown that most early visual areas are organized retinotopically,
although this is strongest in V1 and V2.



Other salient structures

» Other salient structures of V1 include hypercolumns (~1-2 mm),
consisting of:
1. a regular array of orientation columns, perpendicular to the cortical
surface, in which orientation selectivity of neurons is approximately the
same and varies slowly parallel to the cortical surface
2. ocular dominance columns (where the proportion of input from both
eyes is constant within each column, but varies smoothly between
columns)
3. a lattice of cytochrome oxidase blobs — sensitive to color (Hubel, 1982;
Livingstone & Hubel, 1984)

> From a more abstract perspective, the organizational structures of
hypercolumns can be partly explained by the need to map stimulus
dimensions (e.g., retinal position, orientation, etc.) onto two-dimensional
cortical surface while attempting to make the map as smooth as possible
(this is not possible, on topological grounds, so discontinuities occur)
(Durbin & Mitchison,1990).



Hierarchical organization

» A notable property of these visual areas is their hierarchical organization,
which relates to the distinction between low, mid, and high levels.

» Broadly speaking, V1 and MT seem to be involved in low-level processing;
V2, V4, and MST in mid-level vision; and IT in high-level vision. Hence
early vision is believed to be mostly performed in V1, V2, V4, MT, and
MST.

» There is a strong tendency for receptive fields to be larger as they ascend
the visual hierarchy. Compared to those in V1, the receptive fields are 2-3
times bigger in V2, 4-5 times larger in V3/VP, and 7-10 times larger in
MT. But, conversely, the receptive fields become increasing specific to
stimuli, and stimuli of greater complexity, as we move up the ventral
stream. In summary, the receptive fields become more invariant to position
and more specific to structure as we proceed up the ventral stream from
V1 to V2 to IT (Rust & DiCarlo, 2010; Logothetis & Sheinberg, 1996).



Experimental methods

> Many of the findings are based on electrophysiological studies of monkeys
and non-invasive studies of monkeys and humans. Researchers have found
close relationships in early visual areas V1, V2, V3 (Wandell et al., 2007),
but not always at higher areas (Wandell & Winawer, 2011).

» Noninvasive studies like fMRI suffer from limited spatial and temporal
resolution and currently can observe only coarse properties of the visual
system.

> Electrophysiology is restricted to recording from a small number of
neurons in response to a limited range of stimuli. See Carandini (2005) for
the problems of interpreting these results in the early visual cortex. It is
not easy to predict the response of neurons in V1 to natural stimuli.

» There is considerable progress in developing experimental methods that
can probe the properties of neural circuits in much greater detail, such as
optogenetics, which may revolutionize our understanding pf the early
visual system.



Lecture 12.2

> This lecture introduces linear models of neurons, describing how they are
used to model the receptive fields of neurons in the retina, the LGN, and
the simple cells in V1. We also describe complex cells in V1.

» Then we provide a different perspective of these cells as representing
images and introduce overcomplete bases and sparse encoding.

» This lecture includes two exercises involving interactive demos: (12.2.1)
Linear filters and convolution, and (12.2.2) Gabor filters.



Linear models of simplified cells

» This section introduces a model of a simplified cell.

> The cell receives inputs | = (I, b, ..., In) from dendrites that are weighted
by synaptic strengths w = (w1, wa, ..., wy).

> These are summed at the soma (cell body) to obtain:
N
w-l= Z W,'/,'
i=1

> The cells outputs a response f(w - 1) along its axon, indicated by the firing
rate of the neuron. f(.) is a monotonic function (see next slide) but in this
lecture we use a linear approximation:

N
SZW-|=ZW,'/,'
i=1



The nonlinear function 7(.)

» f(.) is monotonic nonlinear function, which takes value 0 if the input is
small, then increases linearly in the linear regime until it saturates at a
maximum value.

> A typical choice of f(.) is the sigmoid function f(w-1) =o(w-1—T),
where T is a threshold and o(.) is a soft threshold.

> In this lecture, we ignore f(.) and study the behavior of the model in the
linear regime.

» Cells in the retina and the LGN are often modeled without the nonlinear
function f(.), adding instead a constant C to the output, to account for
spontaneous firing of the cell, and yielding an output w - I 4+ C, see
(Zhaoping, 2014).



Linear filter figure
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Left: A neuron receives input — action potentials from other neurons — at

its dendrites, which generate excitatory and inhibitory postsynaptic potentials (EPSPs
and IPSPs respectively), whose voltages are integrated at the soma and converted to
outgoing action potentials. Right: A simplified model of a neuron. There are inputs
(h, ..., I5) at the dendrites, with synaptic strengths wi, ..., ws. These are summed at
the soma, 3=, w;l;, and the output S is given by a sigmoid function o(3>"; w;l;). The
sigmoid function o () (top right) has a linear regime (brown line) and low and high

thresholds.



Linearity and superposition

» This model S = w - | is linear in two respects.

> First, it is linear in the input | so that if we double the input | — 2I, then
the output doubles also S — 2S. Second, it is linear in the weights w.

» Most importantly, it obeys the principle of superposition, so that if S, 52
are the outputs to input I', I? respectively, then the output to input
)\1'1 + )\2'2 is A\1S1 4+ A2 So.

» This result is important for characterizing the response of simple neural
cells, since it implies that we can determine the output of the cell to any
stimulus by observing its response to a limited set of input stimuli I.

> Note that this property still remains if we re-introduce the nonlinear
function f(.), provided the function is known.



Retinotopy (1)

» The retinotopic organization of the early visual system has two
implications for these cells.

> First, the weights of the cell depend on its retinotopic position X = (xi, x2)
and the positions ¥ = (y1, y2) of its dendrites.

> We replace the input /; by /(¥) and the weights w; by w(X — ¥). The
receptive field w(X — ¥) will typically be zero unless X — ¥| is small.
» The neuron is modeled by:
SE) =D wE-y)I([)=wxl

y



Retinotopy (II)

» Second, retinotopy implies that there are cells with similar properties (e.g.,
the same weights w) arranged roughly evenly in spatial position (apart
from the log-polar transformations (Schwartz, 1980)).

» This can be thought of as having “copies” of the same cell at all positions
in space. In terms of linear filter theory, these sets of cells are convolving
the image Tby a filter w.



Receptive fields in retina and LGN.

> The receptive fields of the ganglion cells in the retina and the cells in the
LGN can be determined by measuring the firing rate of the neurons in
terms of their response to different input stimuli I and estimating a model
for the response.

> The experimental findings are that many simple cells have a characteristic
receptive field called center-surround. But these findings are the result of
using synthetic stimuli, and cells’ response may be more complex if they
are studied using natural stimuli.

» Photoreceptors have different properties, see (Rieke et al., 1997).



On-center and off-center receptive fields

» There are two different types: on-center and off-center. The receptive field
weights w(X — ¥) are radially symmetric and take the form of a " Mexican
hat” or inverted Mexican hat, for on-center and off-center cells,
respectively (Marr, 1982).

> These cell responses are usually thresholded, e.g., by the sigmoid function,
so that they usually give only positive responses.

» The weights w(X — ¥) can be approximated by the Laplacian of a
Gaussian (LOG) or by its negative:

wioc(X) = *{57 + i}G(ﬂ' 0,0°)

where G(X: 0,0%) = 51 exp{—(x¢ + x3)/(207)}.



[llustration of center-surround cells
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Figure 13 : This figure shows the input-output of a center surround cell (e.g.,
Laplacian of a Gaussian) in three different ways. First, in terms of the inputs and
outputs of neurons (left). Second, in terms of the digitized input image, the filter, and
the digitized output (center). The output at each pixel is given by the product of the
filter to the appropriate intensity values in the input image, e.g.,

4x37—1x49 —1x47—1x 10— 1 x 21 = 21. Third, in terms of the input and
output images (right).



Figure of Gaussians and derivatives of Gaussians
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Figure 14 : A Gaussian filter (far left). The first derivative of a Gaussian (left). The
Laplacian of a Gaussian, or Mexican hat (right). A sinusoid (far right).



Symmetry and properties of receptive fields

> These cells have two important properties:
1. They are radially symmetric in the sense that wyog(.) is invariant to
rotation; e.g., suppose we express position X in terms of radial
components: x; = rcosf, x2 = rsinf, then wioc(rcosé, rsinf) is
independent of 6.
2. The receptive field weights w(.) sum up to zero. More precisely,

Z WLOG()_(‘) =0.

» Note that center-surround cells are often modelled as the differences of
two Gaussians: wpog(X) = A1G(X : 0,02) — A:G(X : 0,03), where 01, 0>
take different values (Zhaoping, 2014). This gives a similar model, if
|o1 — 02| and |A;1 — Az| are small.



Purpose of center surround cells: Dynamic range

» These center-surround cells are believed to help deal with the large
dynamic range of images.

> Suppose we can express the image locally as /(X) = C(X) + B where C(X)
is the contrast, which describes the local details of the image, and B is the
background. Then filtering an image by a center-surround cell, whose
receptive field sums to 0, removes the background term and preserves part
of the contrast.

> More precisely:

5(%) = Z wioG(X — Y)I(Y) = Z wioG (X — ¥)(C(¥) + B)

y

=Y wios(X — ¥)C(¥)



Encoding information for transmission

> Receptive fields of this type can also help efficiently encode the information
at the retina in order to transmit it efficiently to the visual cortex.

» This can be studied using information theory and the statistics of natural
images to predict properties of receptive fields and how they change in
different environments (Atick & Redlich, 1992).

> This theory is beyond the scope of this chapter and we refer to the
detailed exposition in (Zhaoping, 2014).



Is the retina more complex?

» These models of cells in both the retina and the LGN are well studied.
Although many of their properties were estimated using synthetic input
data, it has been shown that in some cases, the input image can be
estimated from the response of cells in either the retina or the LGN using
these types of models Warland et al., 1997; Dan et al., 1996;
Carandini:2005).

> But others (Gollisch & Meister, 2010) argue that the retina is more
complex, and that, in particular, the neurons may act more as feature
detectors than as spatial-temporal filters.

> In particular, Gollisch & Meister (2010) describe many findings suggesting
that the retina is more complex than the linear filtering model described
above. It is known, for example, that if the light levels go down, then the
receptive field size becomes larger (Zhaoping, 2014).



Temporal and color properties

» A more realistic model of the output is

5(27 t) = ZW(;_th_T)I(va)
VT
where w(X — y, t — 7) is a space-time filter.
» There are two types of cells with different temporal properties:
1. M-cells, whose receptive fields are spatially large but temporally small
(faster), project to the dorsal stream.
2. P-cells, whose receptive fields are spatially smaller but temporally larger
(slower), project to the ventral stream.

» We can also model the dependence of the cells on the wavelength of the
input light by

S(X) = /d)\w(ifY)wc()\)l(%, A),

where A\ denotes the wavelength and wc(\) specifies the sensitivity of the
cell to color, see (Zhaoping, 2014).



Tuning of receptive fields to sinusoids

> To determine the receptive field of a neuron, we study its response to a
class of stimuli while varying the stimulus parameters (i.e., the perceptual
dimensions). To find how well the neuron is tuned to particular stimulus
parameters, see (Hubel, 1982).

> In this section, we analyze tuning when the stimuli are sinusoid gratings.

> We stimulate the receptive field of a neuron by a sinusoid grating
I(X) = Acos(& - X + p) + lo,

where A is the amplitude, p is the phase, & is the frequency, and Iy is the
mean light level.

» The frequency specifies the orientation of the stimulus by the unit vector
& = &/|@|, and the period of the oscillation by |&|. The phase p shifts the
center of the sinusoid. To see this, re-express
Acos(@ - X 4 p) = Acos(& - (X — X)), where % = —pa/|@|? is the shift in
position. If p = 0, the center occurs at X = 0.



The response of a center-surround cell to sinusoids

» We assume that the neuron is a center-surround cell and its receptive field
is a Laplacian of a Gaussian wyoc(X).

> The predicted response is:
/ d%WL06(R)Acos(@ - %+ p) = A(cos p)(&@ - &) exp{—(0°3 - &) 2}

» We deduce three properties:
1. The response is biggest if the center of the sinusoid is aligned to the
center of the cell, i.e., p = 0, falling to zero at p = /2
2. The cell responds best to frequencies with | - &| = 2072 ( by
maximizing the response with respect to |J|)
3. The cell is insensitive to the orientation of the stimuli.

» We can characterize a neuron by measuring its firing rate when it is

stimulated with sinusoids. We can use these properties to determine if it is

center-surround or not, and if it is, to estimate its parameter 2.



Simple cell receptive fields in V1

> The receptive field properties of simple cells in V1 were studied by Hubel
and Wiesel (1962, 1968) who showed that many cells were tuned to the
orientation of edges and to the size of bars of light.

> They also showed that these cells were spatially organized with
hypercolumns and retinotopic organization. Further electrophysiological
studies by Roner and Pollen (1981) and Jones and Palmer (1987) showed
that the receptive field properties of these cells could be approximately
modelled by Gabor filters (Daugman, 1985), which are the product of
Gaussians and sinusoids. Derivative of Gaussian filters give an alternative
model (Young et al., 2001).

> It was also reported that the receptive fields occur in quadrature pairs
(Pollen & Roner, 1981), so that neighboring cells are 90 degrees out of
phase (e.g., a cosine Gabor is paired with a sine Gabor).



Gabor filters

> Gabor functions are the product of a Gaussian
G(%:0,%) = zpgy xp{—(1/2)X" 715}
with covariance X times a sinusoid:
exp{id - X} = cosd - X+ isind - X.
» This gives two basic types of Gabors:
1. cosine-Gabors
Geos(X) = G(X;0,X)cos & - X
2. sine-Gabors
Gsin(X) = G(X;0,X)sind - X.

> These form a quadrature pair, because sin(.) and cos(.) are 90 degrees out
of phase.



Properties of Gabor filters

> Gabor filters give a good trade-off between localization in position and in
frequency.

> The Gaussian has good localization in position, in the sense that its
response is very small if |X| > 20. The sinusoid has perfect localization in
frequency (due to the orthogonality of sinusoids) but is unable to localize
in position (because a sinusoid does not tend to zero for large X).

> Gabor derived the Gabor function by optimizing a criterion that balanced
optimality in frequency with optimality in position (Daugman, 1985).



[llustration of Gabor filters
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Figure 15 : A family of Gabor receptive fields. The panels show cosine-Gabors (left)
and sine-Gabors (right) at different orientations (rows) and different scales (columns).
Observe that the cosine-Gabors have biggest responses at their centers (because
cos 0 = 1), while the sine-Gabors have small responses there (because sin0 = 0).



The response of Gabor filters

Figure 16 :

A Gabor functions aligned to the vertical axis (left). The image of a
zebra (center). The response of the vertical Gabor filter on the zebra image (right).



Modelling V1 neurons with Gabor filters

> It has been argued (Lee, 1996) that many simple cells in V1 could be
modeled by a family of Gabor filters with specific relationships between the
parameters of the Gaussian and the sinusoid, X and &. The orientations of
the Gaussian and the sinusoid are aligned, and the aspect ratio between
the major and minor axes of the Gaussian is 4.

> In more detail, express the frequency of the sinusoid by & = w(cos 8, sin 6),
where 6 is its orientation and w is the frequency. Then the covariance ¥ of
the Gaussian is proportional to
(1/4)(cos 0, sin 8)(cos 8, sin )7 + (—sin b, cos§)(—sinf,cos )T (T
denotes vector transform).

» The sinusoid exp(iX - &) has its " propagating direction” along the shorter
axis of the Gaussian, so the Gaussian smooths more in the direction
perpendicular to the propagating direction, by a factor of 1/2 = /1/4.



A family of Gabor filters

> This family is specified by:

2
w

4rK?
x exp{ —(w’ /8K?){4(X - (cos b, sin0))* + (X - (—sin b, cosh))*}
x exp{iwX - (cos 0, sin 0)} exp{(K>/2)}}.
» The variance is proportional to K. This is normalized so that
[ d3{y(%;w,0,K)}* = 1. K ~ 7 for a frequency bandwidth of one

octave, K & 2.5 for a frequency bandwidth of 1.5 octaves (“octaves” are
the log ratio of the frequency — see Zhaoping, 2014).

P(XKw,0,K) =

» This family can also be scaled to give a form:

Yol 0, K) = 0a(3/350,0, K)



The tuning of Gabor filters (1)

> We study the tuning of Gabor cells by stimulating them with a family of
stimuli of form Acos(d - X 4+ p) and varying & and p.

> We define wy = @ - (cosf,sind) and wy, = & - (—sin 6, cosh) to be the
projections of the input sinusoid in the favored direction of the cell (i.e.,
@) and in the orthogonal direction (i.e., w, = 0 if the input sinusoid aligns
perfectly with the orientation of the cell).



The tuning of Gabor filters (I1)

> The responses of the cosine-Gabor Ge.s and the sine-Gabor G, are given
by:

A K22 2

Ecospexp{— wy[w}

xfexp{— (K*/202)(w + )’} + expl—(K?/2)(w — we)’}} exp{ K22}

A
3 sin pexp{ —2K’w; /w’}

x{exp{—(K*/2w*)(w + w:)’} — exp{—(K?/20%)(w — wx)*}} exp{K?/2}.

> The cosine-Gabor cell is tuned to p = 0, and the tuning falls off as cos p.
The cell also favors sinusoid stimuli, which are aligned to it (i.e., w, = 0),
and whose frequency wy = tw.

> The sine-Gabor prefers stimuli with p = 7/2 and has similar tuning to the
frequency with w, = 0 and wx = fw.



Complex cells

» Complex cells are sensitive to orientation, but they are less sensitive than
simple cells to the spatial position of the stimuli. This illustrates the
standard theory of the ventral stream: visual processing proceeds up this
stream using receptive fields, similar to simple and complex cells, which
are increasingly tuned to more complex structures and are less sensitive to
the precise positions of the stimuli.

» From this perspective, complex cells are the second stage after simple cells,
forming a simple-complex cell module that gets repeated up the hierarchy.



Complex cells energy model

> We describe here the energy model where the complex cell receives input
from two simple cells that are 90 degrees out of phase (i.e., cosine-Gabors
and sine-Gabors). This is partly motivated by quadrature cells (Jones &
Palmer, 1987) and partly by these cells being less sensitive than simple
cells to the specific position of the stimuli.

» More precisely, the energy model of a complex cell gives response:

S(X) = {thsin * I(’?)}2 + {Yeos * I(’?)}2

where * indicates convolution.



Tuning of complex cells

» We study the tuning of complex cells by measuring their response to
sinusoid stimuli. The findings show that these cells are, like simple cells,
tuned to orientation, frequency, and phase. But their tuning, particularly
to phase, is less precise. Hence complex cells are less sensitive to the
precise position of the stimuli. The response is given by:

2
AT exp{K*} exp{—4K’w} /w’}

{exp{—(K?/w?)(w + wx)?} + exp{—(K?/w?)(w — wx)?}
+2cos2pexp{—(K?/w?)(w + wx )} exp{ —(K*/w?)(w — wx)’} }.

> Observe that the dependence on the phase p is much smaller (the
dominant term in the second line is independent of p).



[llustration of complex cells

Figure 17 : A complex cell can be modeled as a quadrature pair of Gabor filters. The
stimulus is a grey circle on a white background (far left). A quadrature pair of Gabor
filters is applied to the stimulus, giving the largest responses when the orientation of
the Gabors matches the orientation of the edge of the circle. The responses of the
Gabors are squared and then summed to yield the final output (far right).




Complex cells: Complications

> In other models, complex cells are built from simple cells in alternative
ways, but the complex cells retain their basic property of being tuned to
orientation and frequency but being less sensitive to the position of the
stimuli.

> But some researchers question whether complex cells receive input from
single cells arguing that the computations could be done by nonlinear
neurons that exploit the complexity of the dendritic tree (Mel et al., 1998).

> Other researchers argue (Mechler & Ringach, 2002) that there is no sharp
dichotomy between simple and complex cells, but instead there is an
continuum of cells with variable sensitivity to position.



Linear filtering and basis functions (1)

> We put these models into the context of the literature on linear filtering
and Fourier analysis. This is an advanced section that gives greater
understanding but is not required for a basic introduction.

> As discussed earlier, simple cell models apply linear filters to images and
cells at different spatial locations, performing convolution * by applying
the same filter w across the image:

S(FR) =w1(x) =) w(x-PI).

> It is also convenient to approximate this (take the continuum limit) and
express it as an integral:

S(%) = / w(% — 7)I(7)d57.

» This continuum limit is a good approximation, if the summation Zy is
over a dense set of positions ¥, and enables certain type of analysis (e.g.,
showing that a center-surround cell model sums, approximately, to zero).



Convolving by a Gaussian and derivatives of a Gaussian

Convolving an image by a linear filter produces an output image S(X) whose
form depends on the type of filter w. For example, if w(X) is a Gaussian
function G(X;0) = 72 exp{—(x¢ + x3)/(20%)}, then convolution effectively
just smooths the image by taking a linear weighted average. If w is a derivative
of the Gaussian in the x; direction, w(X) = dinG(S(’; o), then this filter gives a
large response to edges, positions ¥ where the intensity /(y) changes abruptly,
and has small responses in places where the image intensity changes slowly.




Linear filtering, basis functions: Fourier analysis (1)

We can better understand images, and linear filtering, by using functional
analysis. This states that an image, or any signal, can be expressed uniquely as
a weighted sum of basis functions:

I(X) = Za;b,-(z), (1)

where the b;(X) are basis functions and the {«;} are coefficients. These basis
functions are usually chosen to be orthonormal, so that > bi(X)b;(X) = J;
(=1ifi=jand =0if i # ). If the basis functions are orthogonal, then the
coefficients a can be obtained by:

o = Z 1(R)bi(X). (2)



Superposition

> The principle of superposition states that we can determine the output S
as a weighted combination of the outputs of the basis functions:

S(X) = Z @;Si(%), where S;(X) = Z w(X — ¥)bi(¥). (3)

y

» This implies that if we know the response S;(.) to each basis function
bi(.), then we can predict the response to any input. This is an attractive
property that if it holds, enables us to measure the receptive field of a
linear neuron, or a thresholded linear neuron, from a limited set of stimuli.



Linear filtering, basis functions: Fourier analysis (Il)

Fourier analysis deals with a special class of basis functions. These are
sinusoids, i.e., of form sinwx, coswx. The a's are the fourier transform of the
image. If we restrict ourselves to an image defined on a lattice (i.e., so that
x1, x2 each take a finite number of values, as on a digital camera), then this is
the discrete fourier transform. But if we allow x1, x» to take continuous values,
then we get the fourier transform:

(%) = %/7(@)exp{—i@-)‘<’}d(ﬁ (4)
i) =5 / (%) explics - X} d% (5)

Here exp{id - X} = cos(dJ - X) + isin(dJ - X). Note that if /(.) is symmetric,
I(%) = I(—X), then 1(@) is also symmetric, 1(—&) = 1(&). Observe that
equations (4, 5) correspond to equations (1, 2) for special choices of the basis
functions (and changing from discrete to continuous X).



Linear filtering, basis functions: Fourier analysis (lII)

Fourier analysis is particularly important because it gives us a way to represent
nonlocal structure of images in terms of frequencies w. The high frequencies
(large |&|) represent image patterns that change rapidly, while the lower
frequencies (small |J|) represent slowly changing patterns. In particular, if an
image pattern is periodic, like the stripes on a zebra, then it can be expressed
in form:

I(X) = ZA,, cos(2mnddy - X),

where &y is the basic frequency and n denotes integers. Then the Fourier
transform is only nonzero at integer multiples of the basic frequency & = Jp.
Hence periodic image patterns, such as textures, have very simple descriptions
in Fourier space.



Linear filtering, basis functions: Fourier analysis (V)

> If we blur the image, by convolving with a Gaussian G(X; o), to obtain
G * I(X), then the high frequencies of the image T will be smoothed out.
By the convolution theorem, the Fourier transform of G x /(X) is the
product of the Fourier transforms of G and I. The F.T. of a Gaussian is
also a Gaussian exp{—|&|?(¢%/2)}. Hence we can express the convolved
image as a weighted combination of sinusoids, where the high-frequency
weights are decreased by exp{—|&|?(¢%/2)}:
1

(%) = g/7(¢3)exp{—w-z} exp{—|@[*(¢?/2)} ds.

> If we increase the blurring, by increasing the variance o2, we will make the

high-frequency coefficients small. Blurring the image can be obtained by
defocusing your eyes so that the image is seen out of focus. The receptive
fields of cells occurs at a range of different scales, corresponding to
convolving with Gaussians of different variances.



Linear filtering, basis functions: Fourier analysis (V)

The superposition principle, combined with the use of basis functions, shows
that we can determine the receptive fields of linear neurons by stimulating
them with sinusoids. Sinusoids can be used as basis functions, and
superposition can be used to predict the response to stimuli that have not been
seen yet (i.e., as superpositions of those stimuli to which the response is
known). This, however, is rarely done.



Sparsity, matched filters, and natural images

» Next, we consider receptive field models from different perspectives. This
includes the use of sparsity to suggest receptive field properties based on
the statistics of natural images as well as the idea of matched filters,
which revert to an older idea of receptive fields as feature detectors
(Lettvin et al., 1959). Sparsity was proposed by Barlow (1961) as a
general principle for modeling the brain based on the observation that
typically only a small number of neurons are active. It was developed as a
way to predict receptive field properties by Olshausen and Field (1996). It
is natural to ask whether the receptive fields of cells encode basis
functions that somehow capture the typical structure of images and
represent it in a form that is suitable for later processing.

» Our starting point is the idea that images, and particularly local regions of
images, can be represented as a linear combination of basis functions
I(X) =3, aibi(X), as we saw in equation (1).



Sparsity and overcomplete bases

» Consider an image consisting of regions where the intensity varies spatially
smoothly and regions where the intensity consists of a number of bright
spots, or impulses. The smoothly varying regions of the image can be
efficiently represented by Fourier analysis, in the sense that we can
approximate the intensity by only a small number of weighted sinusoids

» By contrast, the impulses are much better represented in terms of a basis
of impulse functions. It would be inefficient to represent them in terms of
sinusoids.

> In short, different types of basis functions are suitable for different regions
of the image.

> This suggests a strategy of seeking a representation in terms of an
overcomplete set of basis functions, in this case sinusoids and impulse
functions, and a criterion that selects an efficient representation so that
only a small number of basis functions are activated for each image. This
requirement is called ¢; sparsity.



{1 sparsity

> More formally, we represent an image, or local image region, by:

1(X) = Za;b;(?),

where the {b;} are the basis functions and the {«;} are the coefficients.

» The number N of bases is bigger than the dimension of the image, and
hence the bases are overcomplete. Overcompleteness implies that there
are many ways to represent the image in terms of these basis functions (by
different choices of the a’s) and that we need an additional criterion to
select the a's. The /¢; sparsity criterion proposes that we favor
representations that make "V |a;| small, penalize the weights of the
basis functions, and encourage most coefficients to be 0.



{1 sparsity criterion

» We represent an image | by the approximation E,N:l &ibi, where the {&i}
are chosen to minimize the function:

E(e) = Z(’(?) —Zafb/(?))“r/\ZlafL (6)

» The first term penalizes the error of the approximation, and the second
term, whose strength is weighted by a parameter A, penalizes the
coefficients {a;}. The solution & = arg min, E(a) cannot be specified in
closed form, but E(a) is a convex function of «, and efficient algorithms
exist for minimizing it to estimate &. The results of these algorithms can,
for example, decompose an image into a sum of sinusoids and a sum of
impulse functions.



Sparsity and receptive fields (1)

These ideas give an alternative way to think about the receptive fields of cells
in V1. First, observe that V1 has far more cells than the retina or the LGN, and
so it has enough neural machinery to implement overcomplete bases. Second,
overcomplete bases can be designed for specific image structures of interest
(e.g., impulse functions or edges), which enables us to start interpreting the
image instead of simply representing it. Third, it relates to the observation that
cells in V1 fire sparsely, which suggests (Barlow, 1961) that they are tuned to
specific stimuli and may relate to metabolic processes (firing a neuron takes
energy, which needs to be replenished). Hence the idea that the visual cortex
seeks to obtain sparse, and hence presumably more easily interpretable,
representations has intuitive appeal.



Sparsity and receptive fields (I1)

> Families of Gabor filters give an overcomplete basis, so they do not specify
a unique representation of an image. These issues, and the relations of
Gabors to wavelets, are discussed in more detail in (Lee, 1996).

» Sparsity can be used to derive the properties of receptive fields of cells in
V1 from natural images (Olshausen, 1996), see figure (18)(Left). Hence
instead of hypothesizing models of receptive fields (e.g., Gabor filters), we
can try to predict these receptive fields from studying images. These
predictions do give some justification for Gabor functions, but they also
suggest other receptive field models that have been experimentally
observed.



Learning receptive fields using ¢1 sparsity

» To learn the basis functions {b;} from a set of natural images
{T* : i € A}, we extend equation (6) to obtain a criteria E(b, a) for
fitting basis functions b and coefficients « to the set of images:

E(ba) =) (I"(%) - Za“b(x PEAD D el

HEN LEN i=1

» We estimate the basis functions b and the coefficients & by minimizing
E(b, @) to obtain: .
(b, &) = arg (rpin) E(b, ).

» This criterion has been applied to natural images (where the Trepresent
small image regions), and the resulting basis functions, see
figure (18)(left), include filters that look like Gabor functions but they also
include other types of filters observed in experiments (Olshausen, 1996).



Alternatives: ICA

» Other methods can predict receptive field properties from natural images
using a similar image model, /(X) = Z,N:1 a;ibi(X), but imposing different
assumptions on the form of the bases. In particular, independent
component analysis (ICA) gives similar receptive field models (van Hateren
& Ruderman, 1998). Hyvarinen (2010) explains this by showing that both
types of models — L1 sparsity and ICA — encourage the «; to be strongly
peaked at 0, but can occasionally have large nonzero values.

» What happens if we remove the sparsity requirement and instead find the
basis functions that minimize > (/*(X) — vazl ol bi(X))?? The basis
functions will be the eigenvectors of the correlation matrix of the images
and can be found by principal component analysis (PCA).



{1 sparsity figure
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Figure 18 : Left: The receptive fields learned using sparsity (Olshausen, 1996).
Right: receptive fields learned by matched filters.




Matched filter interpretation

> An alternative idea is that cells are feature detectors (Lettvin et al., 1959).
This can be modelled by a set of matched filters, which is an extreme form
of sparsity, because any image patch can be represented by a single filter.

» Examples of matched filters are shown in the previous figure (right).

> Suppose we have a filter W and an input image patch 7;,. We want to find
the best fit of the filter to the image by allowing us to transform the filter
by W — aW + b&, where & = (1/v/N)(1,...,1). This corresponds to
scaling the filter by a and adding a constant vector b. If W is a derivative
filter, then by definition, W - & = 0. We normalize W and & so that
W-W=¢&=1



Matched filters

> The goal is to find the best scaling/contrast a and background b to
minimize the match:

E(a,b) = |I, — aW — b&|*.

» The solutions 3, b are given by (take derivatives of E with respect to a and
b, recalling that W and & are normalized):

-

A3=W-1,, b==g. I,
> The filter response is just the best estimate of the contrast a. The
estimate of the background b is just the mean value of the image. Finally,

the energy E(3, 13) is a measure of how well the filter “matches” the input
image.



Matched filter dictionaries

The idea of a matched filter leads naturally to the idea of having a‘“dictionary”
of filters {VT/“ : i € A}, in which different filters W* are tuned to different
types of image patches. In other words, the input image patch is encoded by
the filter that best matches it. The dictionary of matched filters could be
implemented by a set of cells (e.g., orientation columns). In this interpretation,
the magnitude of the dot product W - T is less important than deciding which
filter best matches the input 7;,. Matched filters can be thought of as an
extreme case of sparsity. In the previous slides, an image was represented by a
linear combination of basis functions whose weights were penalized by the /1,
>~ |ai]. By comparison, matched filters represent an image by a single basis
function. This gives an ever sparser representation of the image, but at the
possible cost of a much larger image dictionary. Matched filters can be thought
of as feature detectors because they respond only to very specific inputs.



Lecture 12.3

» This lecture describes how linear filters can be learned from images by
unsupervised algorithms or estimated from neural data by regression. We
describe how these receptive field models can be used for binocular stereo
and for motion estimation.

» Then we introduce probabilities and decision theory. We motivate this by
discussing how cues can be combined to detect edges in images.

» This lecture includes exercises involving interactive demos: (12.3.1) Oja’s
Rule and Principal Component Analysis, (12.3.2) Natural Image Statistics,
and (12.3.3) Statistical Edge Detection.



Unsupervised learning of the receptive fields.

» We now introduce unsupervised neural network algorithms for learning
receptive fields. This section is based on computational studies performed
in the 1980's (Linsker, 1986a,b; Yuille et al., 1989), see (Zhaoping, 2014)
for other references. These studies are based on modifications of the Hebb
learning rule, which has some experimental support. Exercise demo
(12.3.1) illustrates principal component analysis and Oja's rule (Oja,
1982).

> The basic findings are that center-surround, orientation selective,
quadrature pairs, and disparity sensitive cells (precursors to cells that can
estimate depth from binocular stereo) could all be obtained by variants of
the same learning rule. Analysis of these findings suggest that this is
partly due to the shift invariance of images.



Unsupervised learning by Hebb's rule (1)

> We first describe a simple unsupervised learning model for a single cell
(Oja, 1982). The output S(t) of the cell is a function of time t and is a
weighted sum of the inputs /;(t), where the weights wi(t) are functions of
time and are updated by Oja’s rule (Oja, 1982):

S0 = Y wlD(0)
dW,'(t) _ ] ]
5 — S(6)(1() ~ S(e)wi(2)). )

> The first term (Hebbs) increases the strength of a weight w; if its input
li(t) is positively correlated with the output S(t) (i.e., < S(t)/i(t) >> 0),
while the second term decreases the value of all weights by an amount
proportional to their strength.

» This can be expressed as a single update equation:

P~ S w40 — 3w (). ®)




Unsupervised learning by Hebb's rule: Analysis (1)

> Next we assume that the weights w; change at a slower rate than the
input images. This enables us to replace the terms /;(t)/j(t) with their
expectation Kj =< [;(t)/;(t) >, which is the correlation function of the
input. This gives:

dw;(t
di ) :ZV'GKU—ZWiV'/jWk’Qk~ )
J ik
» The fixed points of this equation, the values of w such that dwd%t(t) =0, can

be shown to be eigenvectors of the correlation function Kj. A slight
modification gives an update rule (Yuille et al., 1989) that converges to
the global minimum of the cost function:

E(w) = —(1/2) ) Kywiw; + (k/4)(Z w')?

iJ



Unsupervised learning by Hebb's rule: Analysis (I1)

> The global minimum corresponds to the biggest eigenvalue of Kj;. If the
correlation function Kj; decreases with distance, then the biggest
eigenvalue is at frequency 0, so the cell is not tuned to any frequency. But
if the correlation function has the shape of a Mexican hat, then the
biggest eigenvalue has a nonzero frequency, which implies that the cell is
orientated (Yuille et al., 1989).

» The correlation function of natural images does decrease spatially, but
Linsker (1986a,b) showed that correlation functions similar to the Mexican
hat arise if this learning procedure is applied to a sequence of layers.

> This analysis yields receptive fields that are sinusoids, and hence have no
spatial fall-off, which is unrealistic. But receptive fields of neurons are
limited by the geometrical positions of the dendrites. If these constraints
are included, then the algorithms converge to receptive fields that are
similar to Gabor functions.



How to empirically estimate receptive field models by regression.

» We can estimate the receptive field properties of cells from electrical
recordings of neurons by estimating the best model using regression. This
makes few assumptions about the form of the receptive field.

> Recall that the receptive field properties of neurons are traditionally found
by probing their response to different perceptual dimensions, such as
orientations and frequency. This gives a classification of the type of the
receptive field but does not specify its receptive field weights w unless
strong assumptions are made (e.g., that the receptive field is a Gabor
function).



Estimating receptive field models by regression.

> The regression method makes few assumptions about the forms of the
receptive field, but it does require more data. It requires a stimulus data
set of S = {(S“,T“) cuw=1,..., N} of inputs * and outputs S* (e.g., the
firing rates). It requires a model, such as g(/: W) = o(w - I), where o(.)
is a sigmoid function.

> Regression requires minimizing a cost function like:

where E(.) is a penalty function, e.g.,(S* — g(/*; T))*.

» This minimization can be done by standard computer packages. It outputs
an estimate of the model parameters w* and an error measure

F(#°) = 15 T, E(S" — (1" @%)).



Complications (1)

In practice, there are several complications. It is unrealistic to show the neuron
all possible stimuli because there are so many possible image stimuli. Hence
researchers have to choose a restricted set of stimuli. If neurons are linear, or a
nonlinear function of a linear filter, then this should not matter because we can
exploit the superposition principle and estimate the receptive field from a
limited number of stimuli. But in reality, linearity is only an approximation, and
in practice, the choice of stimuli can matter considerably. One concern is that
the stimulus set does not contain the types of stimuli that the neuron is most
sensitive to, in which case regression will output unreliable estimates. Also, if
the linear assumption is only partially correct, then there is no guarantee that
the receptive field learned on one set of stimuli will predict the behavior well on
another set of stimuli.



Complications (1)

The complications are illustrated by recent findings (Talebi & Baker, 2012) that
estimates of the receptive fields of neurons can depend heavily on the set of
stimuli. The authors used three different stimulus sets: (1) white noise (WN),
(2) oriented bars (B), and (3) natural images (NI). This gives three estimates
for the receptive fields wwy, Wi, Wy by using stimulus sets Sy, Sg, Sni. For
each data set, they compute the prediction errors Fuy, Fg, Fnr which are the
errors for the?t.data set, e.g., Fun(Wyyy) = m _ZuGSWN F(SH — g(I*; Wiyw)).
These quantities show how well the models can fit each stimulus set. They can
also enable us to study how well the estimated receptive field from one stimulus
set can predict the other data sets. This involves computing quantities such as
Fwn(wg), Fwn(Wny), Fe(Wiw), Fun(Wy), Fui(Wwn), Fun(Wg). They show
that the receptive fields estimated on the natural image stimulus set were much
better at predicting the responses on the other two stimulus sets.



Local models for binocular stereo (1)

» Linear filter models of receptive fields can also be used to perform local
estimates of binocular stereo and motion. These models involve having
filterbanks, or populations of filters, that are tuned to different properties
of the stimuli, so that estimates of depth and motion can be extracted
from the population (Zhaoping, 2014).

> Recall that we introduced binocular stereo earlier. Depth is estimated by
triangulation provided we can solve the correspondence problem by finding
which points in the left and right eyes correspond to the same point in
three-dimensional space. This reduces to estimating the displacement, or
disparity, between the images in the left and right eyes. In this section, we
introduce the disparity energy model, which estimates disparity based on
local properties of the image. Later we will discuss how nonlocal context
can be used to improve disparity estimation.



Local models for binocular stereo (I1)

» The disparity energy model is formulated using Gabor filters and has some
claim to biological plausibility (Ohzawa et al., 1990; Qian, 1994). The
model assumes that we have a large set of cells, receiving input from both
images and tuned to different image frequencies and spatial phases.

> We give the presentation in one dimension, exploiting the epipolar line
constraint. It assumes that the cell receives input from both left and right
eyes with receptive fields fi(x) = exp{—x>/(20%)} cos(wx + p;) and
f.(x) = exp{—x?/(20°)} cos(wx + p;). These are Gabors where the
Gaussian has variance ¢, tuned to frequency w and with phases p;, p;.
The linear response is:

;= / I {ECN(X) + £()h ()} (10)

> This filter is tuned to spatial frequency w. The filter is most sensitive to
the image component at this frequency. Hence we can represent the image
(approximately) by /(X) = pcos(wx + 0).



Local models for binocular stereo (I11)

> Suppose that the right image is a displaced version of the left image
I-(x) = Ii(x + D(x)), where D(x) is the disparity. We assume that the
disparity varies slowly so that we can approximate it locally as a constant
D (over the size of the Gaussian, 20). To analyze the model, ignore the
Gaussian when calculating r. This gives:

n = p{cos(6 — p1) + cos(6 — p, — wD)} (11)
which can be re-expressed (using trigonometry identities):
. _pit+pr wD pp—pr D
n = 2pcos(f — 5 ) cos( 5 w 2) (12)

» The response of the cell depends on the disparity but also on image
properties (e.g., image phase ). So we need a population of cells to
detect disparity.



Lcoal models for binocular stereo (1V)

» To see this, suppose that we consider quadrature pairs of the two cells
tuned to the same w. Where one cell has phases p/, pr, and the other has
phases pj, p;, where (p; — pr) = (p) — pr) and pj + p} = pi + pr + 5. Then
the second cell has response
r = 2pcos(f — LFLr — Dy cog(LLr — wD) =
2psin(g — 25er — %)cos(p’z’)’). Hence if we square and add the
responses of the two cells, we obtain:

1+ r; = cos (p/ 5 —) (13)

» This response depends only on the disparity D and the image frequency w.
It takes largest values when p; — p, = wD. Hence we can estimate D from
a population of quadrature cells tuned to different phases p;, pr and
frequencies w.



Local models for binocular stereo (V)

> A neural network for estimating D using a population of neurons consists
of two steps. In step (1) we define a set of disparity cells tuned to
disparities {D; : i = 1,..., N}. The disparity cell tuned to disparity D;
receives input cos%% - w%) from each quadrature pair (p/, pr,w) and
sums these inputs together to compute a vote v(D;):

D)= Y oML —w%)A (14)

PlsPr,w

Step (2) uses a winner-take-all network (Maass, 2000) to compute the
disparity with the biggest vote by solving b= arg max;—1
that v(D) > v(D;) for i =1,...,N.

» There is plenty of evidence that the brain represents information by neural
populations (Georgopoulos et al., 1983; Mcllwain, 1991). There have also
been several theoretical studies of how populations of neurons could

encode knowledge and perform computations (Pouget et al., 2003; Ma et
al., 2006).

.....



[llustration of local model of binocular stereo
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Figure 19 : Left: The disparity D between the images in the two eyes corresponds to
a change of phase if we approximate the intensities by sinusoids. Right: The local
disparity D is encoded by the feature response of cells tuned to frequencies that obey
pr— pr=wD.



Motion measurement: Spatio-temporal filters.

We now discuss how related models can be used to estimate motion for
sequences of images. Spatiotemporal filters are biologically plausible ways to
measure motion that agree with properties of cells in the visual cortex. The
standard model suggests two classes of cells: the first comprises spatiotemporal
filters that are sensitive to the directions of motion, while the second class
combines outputs of these filters to estimate the motion itself (Adelson &
Bergen, 1985; Grzywacz & Yuille, 1990; Schrater et al., 2000).



Motion measurement: Figures
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Figure 20 : Left: This figure shows the space-time illustration of a signal traveling
with constant velocity /(X, t) = F(X — tv). This means that the intensity /(X, t) is
constant on the lines X — tv = constant. Right: A stimuli moving with velocity v will
activate spatiotemporal filters &, w;, which lie on the plane vV - & + wy = 0. Hence the
velocity can be estimated from the population of activity of the filters.



Motion

measurement (I)

Measuring the motion velocity assumes that locally, the intensity can be
modeled as a linear translating pattern:

I(X,t) = F(X — Vt). (15)
Differentiating with respect to X and t (using VI = VF and

o =—v- VF) gives the optical flow equation:
e
v-VI+—=0. 16
v-VI+ ot (16)

This enables us to estimate one component of the motion vV but suffers
from the aperture problem and so is ambiguous.



Motion measurement (II)

» The ambiguity can be resolved by a population of filters
{G*(X,t) : p=1,..., M} indexed by u (e.g., Gaussians). These filters
introduce local context:

GH (%, ) = / GH(% — 7, t — 5)I(7,5)dsdy. (17)
Each filter gives a constraint on the velocity:
S I
7-VG"xl+ 8G8t*' =0. (18)

» We get an estimate of the velocity vV by minimizing the cost:

OGH x 1)2
ot '

M
E(V)=) (V- VG I+
p=1
» This minimization can be done using a similar neural network to that used
for estimating disparity for stereo in the previous section.



Motion measurement (llI)

We have a set of cells tuned to different velocities {V; : i = 1,..., N}. The cell
tuned to velocity Vi receives input (V - VGH x|+ %‘:*’)2 from each filter u
and sums the responses to obtain E(V;). Then we use a variant of
winner-take-all to compute 7= arg minj=1,....n E(V).



Motion measurement: The need for spatial and temporal context

This approach assumes that there is enough local information to resolve the
motion ambiguity which may not be the case. For example, for the stimuli in
figure 12.7 in the chapter, we can only locally estimate one component of the
motion because of the aperture problem. To resolve this ambiguity, we need to
use more spatial or temporal context.



Motion measurement: Spatial and temporal context (1)

An alternative way to analyze this problem is by applying Ffourier analysis to
equation (15):

(@, we) = %///exp{i(ﬁv?—kwtt)}l()?, t)ddt

(&, we) = %///exp{i(? - X 4 we)t}exp{id - (X — Vt)} F(X — Vt)dXdt

1@, we) = %/exp{i(varwt)t}dt//exp{w-i}F(i)di

1@, we) = 6(V - @ + we)F(@)

where X = X — ¥t is a change of variables in the integral.



Motion measurement: Spatial and temporal context (I1)

This shows that if we have filters exp{i(X&J + w:t)} tuned to spatiotemporal
frequencies &, w;, then the only filters that respond are those whose frequencies
obey the equation V- & + w = 0 and hence lie on a plane in frequency space.
Hence we can determine vV from a population of filters by observing which
filters are activated and finding the best fit plane.



Motion measurement — Non-Fourier

> In practice, we cannot use filters tuned to frequency because these are not
bounded in space and time. But it can be shown (Grzywacz & Yuille,
1990) that if the filters are spatio-temporal Gabors, then the most active
filters are those whose spatiotemporal tuning is centered on the plane
V-& + wr = 0. Hence the plane in frequency space can be estimated from
a population of spatiotemporal filters and the velocity locally estimated.

» This gives a two stage model of motion estimation, in which the first
population of neurons (i.e., filters) are each sensitive to the spatiotemporal
frequency of the input image but not directly to the motion. The second
population of neurons extract the motion information from the first
population, and hence these neurons are tuned directly to motion. This is
consistent with experimental findings (Adelson & Bergen,
1985),(Grzywacz & VYuille, 1990), (Schrater et al., 2000). Similar models
arise in related work on the fly and beetle visual systems (Hassenstein &
Reichardt. 1956; Borst & Euler, 2011).



Probabilities and decision theory

» We now describe a principled approach for combining the response of
many features/filters to perform tasks like stereo or motion estimation.
This approach is based on decision theory. This section also illustrates the
importance of knowing whether filter responses, hence visual cues for the
task, are dependent or independent.

» We introduce the probabilities of filter responses by describing a classical
experimental finding about natural image statistics. Intuitively, the
intensities of neighboring pixels tend to be similar. This intuition can be
captured by taking derivative filters of the image, i.e., % or 3722’, and
plotting their probability distribution, or histogram. Surprisingly these
probability distributions are very similar from image to image (Simoncelli
& Olshausen, 2001).



Edge detectors/ texture detectors and decisions

> Consider the tasks of deciding whether an image patch at position x
contains an edge by which we mean the boundary of an object or a strong
texture boundary (e.g., the writing on a t-shirt). The previous section
showed that some Gabor filters are tuned (i.e., respond strongly) to edges
at specific orientations. But such filters will also respond to other stimuli,
such as texture patterns, so how can we decide if their response is due to
an edge? The simplest way is to threshold the response so that an edge,
at a specific orientation, is signalled if the filter response is larger than a
certain threshold value. But what should that threshold be? How do we
do a trade-off to balance false negative errors, when we fail to detect a
true edge in the image, with false positive errors when we incorrectly label
a pixel as an edge?

» Also each filter in a filterbank contains some evidence about the presence
of an edge, so how can we combine that evidence in an optimal manner?
How can we formulate the intuition that some filters give independent
evidence, while others do not?



Decision theory

Decision theory gives a way to address these issues. The theory was developed
as a way to make decisions in the presence of uncertainty. In this section we
develop the key ideas of decision theory by addressing the specific task of edge
detection. In the next section we give a more general treatment. We only treat
the case when we are detecting edges based on local evidence in the image.
Later we extend to when we can use nonlocal, or contextual, information.



Filters

To start with, we consider the evidence for the presence of an edge using a
single filter £(.) only. We assume we have a benchmarked data set so that at
each pixel, we have intensity /(x) and a variable y(x) € {£1} (where y =1
indicates an edge, and y = —1 does the opposite). We apply the filter to the
image to get a set of filter responses f(/(x)). If the filter is tuned to edges,
then the response f(/(x)) is likely to be higher if an edge is present than if not.
This requires selecting a filter £(x), such as the modulus of the gradient of

intensity |V/(x)| = %2 + %2 (since |VI(x)| is likely to be large on edges
and small off edges).



Conditional probability distributions

» To quantify this, we use the benchmarked data set to learn conditional
probability distributions for the filter response f(/) conditioned on whether
there is an edge or not:

P(f(Nly = 1), P(F(Nly = —1).

» Each distribution is estimated by computing the histogram of the filter
response by counting the number of times the response occurs within one
of N equally spaced bins and normalizing by dividing by the total number
of responses. The histograms for P(f(/)|y = 1) and P(f(/)|y = —1) are
computed from the filter responses on the points labeled as edges
{f(I(x)) : y(x) = 1} and not-edges {f(/(x)) : y(x) = 1} respectively.
Typical conditional distributions are shown in the figure on the next slide.



Figure for conditional distributions
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Figure 21 :  The probability of filter responses conditioned on whether the filter is on
or off an edge — P(fly = 1), P(f|ly = —1), where f(x) = |VI(x)|. Left: The
probability distributions learned from a data set of images. Right: The smoothed
distributions after fitting the data to a parametric model.



Statistical edge detection

We can now perform edge detection on an image. At each pixel x we compute
f(/(x)) and calculate the conditional distributions P(f(/(x))|y = 1) and
P(f(I(x))]y = —1). These distributions give local evidence for the presence of
edges at each pixel. Note, however, that local evidence for edges is often highly
ambiguous. Spatial context can supply additional information to help improve
edge detection, and so can high-level knowledge (e.g., by recognizing the
objects in the image).



Log-likelihood ratio

The log-likelihood ratio log P Xﬂl{ li gives evidence for the presence of an

edge in image | at position x hls ratlo takes large positive values if
P(f(I(x))ly =1) > P(f(I(x))ly = —1) (i.e., if the probability of the filter
response is higher given an edge is present) and large negative values if
P(f(I(x))ly = —=1) > P(f(I(x))|y = 1). So a natural decision criterion is to
decide that an edge is present if the log-likelihood ratio is greater than zero and
that otherwise there is no edge. This can be formulated as a decision rule a.(x):

) =1 if log LUy =1) P(f(I(x))ly = 1)
R GUO = POy = 1)

>0, a(x)=—1, if log <0.

This can expressed, more compactly, as

P(f(I(x))ly =1)
PGy = -1)

a(x) = arg én{aix ylog



Statistical edge detection figure

Figure 22 : The input image and its groundtruth edges (far left and left). The

derivative dI/dx of the image in the x direction (center). The probabilities of the local

filter responses P((I(x))|y = 1) (right) and P(F(I(x))|y = —1) (far right) have their

biggest responses on the boundaries and off the boundaries, respectively, hence the

log-likelihood ratio log PEUCDIy=1) gives evidence for the presence of edges.
P(f(1(x))ly=—1)



Ambiguities in edge detection

> Note that this rule gives perfect results (i.e., is 100% correct) if the two
distributions do not overlap, i.e., if
P(F(I(x)ly = 1)P(f(I(x))|ly = —1) =0 for all I. In this case it is
impossible to confuse the filter responses to the different types of stimuli.
But this situation is very unlikely to happen. Now consider a more general
log-likelihood ratio test that depends on a threshold T; this gives a rule:

PGy = 1)
BBy = 1)

> By varying T we get different types of mistakes. We can distinguish
between the false positives, which are non-edge stimuli that the decision
rule mistakenly decides are edges, and false negatives, which are edge
stimuli that are mistakenly classified as not being edges. Increasing the
threshold T reduces the number of false positives but at the cost of
increasing the number of false negatives, while decreasing T has the
opposite effect.

art(x) = arg max lo
7(x) g max, v{



Ambiguity of edges figure

Figure 23 :  The local ambiguity of edges. An observer has no difficulty in detecting
all of the boundary of the horse if the full image is available (left). But it is much
more difficult to detect edges locally (other panels).



Decision theory and trade-offs

Making a decision requires a trade-off between these two types of errors. Bayes
decision theory says this trade-off should depend on two issues: first, the prior
probability that the image patch is an edge. Statistically most image patches
do not contain edges, so we would get a small number of total errors (false
positives and false negatives) by simply deciding that every image patch is
non-edge. This would encourage us to increase the threshold T (to —oo so
that every image patch would be classified as non-edge). Second, we need to
consider the loss if we make a mistake. If our goal is to detect edges, then we
may be willing to tolerate many false positives provided we keep the number of
false negatives small. This means we choose a decision rule, by reducing the
threshold T, so that we detect all the real edges but also output ‘“false edges,”
which we hope to remove later by using contextual cues. Later we show how
this approach can be justified using the framework of decision theory.



Combining multiple cues for edge detection

» Now we consider combining several different filters {f;(.)|i = 1, ..., M} to
detect an edge by estimating the joint response of all the filters
P(fi, fo,...ly) = P({fi(I(x))}|y) conditioned on whether the image patch
| at x is an edge y = 1 or not an edge y = —1. This leads to a decision
rule:

_ PUARUCNHY = 1)
or(100) = are max, o8 by = -1~ T

» This approach has two related drawbacks. First, the joint distributions
require a large amount of data to learn, particularly if we represent the
distributions by histograms. Second, the joint distributions are “black
boxes” and give no insight into how the decision is made. So it is better
to try to get a deeper understanding of how the different filters contribute
to making this decision by studying whether they are statistically
independent.



Combining cues with statistical independence

» The response of the filters is statistically independent if:

P{fi(1(x)}y) = HP (1(x))]y) for each y

» This implies that the distributions P(fi(/(x))|y) can be learned separately
(which decreases the amount of data) and also implies that the
log-likelihood test can be expressed in the following form:

ar(x) = argyén{aﬁ}y{zi: log P(f(1(x))|ly = 1) N

P(fi(1(x)ly = —1)

» Hence the decision rule corresponds to summing the evidence (the
log-likelihood ratio) for all the filters to determine whether the sum is
above or below the threshold T. This means that each filter gives a
"vote,” which can be positive or negative, and the decision is based on the
sum of these votes. This process is very simple, so it is easy to see which
filters are responsible for the decision.



Combining cues with conditional independence

» But very few filters are statistically independent. For example, the
response of each filter will depend on the total brightness of the image
patch, so all of them will respond more to a “strong” edge than to a
“weak” edge. This suggests a weaker independence condition known as
conditional independence. Suppose we add an additional filter fo(/(x))
that, for example, measures the overall brightness. Then it is possible that
the other filters are statistically independent conditioned on the value of

fo(1(x)):
PHAICNY: L(1())ly) = P(fo(/(X))I)/)H P(fi(10)) o (1(x)) ¥)

» This requires only representing (learning) the distributions
P(fi(1(x)Ifo(1(x)), y) and P(fo(1(x))]y).



Combining cues with conditional independence

> It also leads to a simple decision rule:

- PR(IGY =1)
ar(x) = arg max, y{lo8 pre i)y = 1)

PG B(I()).y = 1)
2 log P(f 10600y =1 1 (19

> It has been argued (Ramachandra & Mel, 2013) that methods of this type
can be implemented by neurons and may be responsible for edge
detection. Note that the arguments here are general and do not depend
on the type of filters fi(.) or whether they are linear or nonlinear. It has,
for example, been suggested that edge detection is performed using the
energy model of complex cells (Morrone & Burr, 1988).




Classification for other visual tasks

> The same approach can be applied to other visual tasks. For example,
consider using local filter responses to classify whether the local image
patch at x is "sky,” "vegetation,” "water,” "road,” or "other’). We
denote these by a variable y € Y (e.g., where
Y = {"sky"," vegetation” ," water” " road” , or” other” }. We choose a set
of filters {f;(/(x))} that are sensitive to texture and color properties of
image patches. Then, as before, we learn distributions P({fi(/(x))}|y) for
y € Y. We select a decision rule of form:

a(l(x)) = arg max P({fi(/(x))}y) Ty,

where T, is a set of thresholds (which can be derived from decision
theory).

» Experiments on images show that this method can locally estimate the
local image class with reasonable error rates for these types of classes
(Konishi & Yuille, 2000) and computer vision researchers have improved
these kinds of results using more sophisticated filters.



Classifying other image classes

Figure 24 : Classifying local image patches. The images show the groundtruth
(Mottaghi et al., 2014). Certain classes — sky, grass, water — can be classified
approximately from small image patches.



Context

We stress that the theories described in this section model edge detection
without context. There are two types of context we will consider in this lecture.
The first uses spatial context and is low or mid level since it depends only on
generic properties of images and surfaces. It exploits the idea that edges in
natural images are often geometrically regular and co-linear. The second type
of context, is high level and object specific. For example, if we detect a face in
an image, then our knowledge about faces enables us to detect the boundaries
of a face better than if we relied only on local edge cues. This second type of
context is out of the scope of this chapter but is briefly discussed at the end of
these lectures.



Lecture 12.4

v

This lecture discusses Bayes decision theory.

v

We describe divisive normalization and context.

v

Then we discuss the role of context and specify stochastic and
deterministic models of groups of neurons.

v

This lecture includes two excercises involving interactive demos: (12.4.1)
Gibbs sampling, and (12.4.2) Mean Field Theory.



Bayes decision theory and ideal observers

> Bayes decision theory is a framework for making optimal decisions in the
presence of uncertainty. We represent the input by x € X and the output
by y € Y (e.g., for edge detection x is the filter response f(/), and
y € {£1} indicates if an edge is present or not).

> We assume that there is a probability distribution P(x, y) that generates
the input and output. This can be expressed in terms of a prior P(y) and
a likelihood P(x|y) by the identity P(x,y) = P(x|y)P(y). A decision rule
is expressed as § = a(x). We specify a loss function L(a(x); y), which is
the cost of making decision «(x) if the real decision should be y.

> The risk is specified by R(a) =3°,  P(x,y)L(a(x),y). The Bayes rule is
& = argming R(a). The Bayes risk is ming R(a) = R(&).



Bayes rule (1)

The Bayes rule is the best decision rule you can make (subject to this criterion)
and the Bayes risk is the best performance. Hence Bayes decision theory can
specify the optimal way to estimate y from input x. There are several
important special cases. If the loss function penalizes all errors by the same
amount, i.e., L(a(x),y) = K1 if a(x) # y and L(a(x),y) = Kz if a(x) =y
(with K1 > K3), then the Bayes rule corresponds to the maximum a posteriori
estimator a(x) = arg max P(y|x), where P(y|x) = w is the posterior
distribution of y conditioned on y. If, in addition, the prior is a uniform
distribution, i.e., P(y) = constant, then Bayes rule reduces to the maximum
likelihood estimate a(x) = arg max P(x|y).



Bayes rule (I1)

For binary decision problems y € {£1}, the loss function is usually chosen to
pay no penalty if the correct decision is made (i.e., a(x) =y -1) but has a
penalty F, for false positives, where y = —1 but a(x) =1, and F, for false
negatives, where y = 1 but a(x) = — (it is assumed here that the target is

y =1 and the distracter is y = —1, so a false positive occurs if we decide that
a distracter is a target, and a false negative if we decide that a target is a
distracter). It follows that we can express the Bayes rule in terms of a
log-likelihood ratio test log % > T, where T depends on the prior p(y)
and the loss function L(a(x),y).



Bayes rule (I11)

> More specifically, the Bayes risk is R(a) = >_, p(x) >°, L(a(x),y)p(Y[x).
Then we divide the data (x, y) into four sets: (1) the true positives

{(x,y): s.t. a(x) =y = 1}; (2) the true negatives

{(x,y) : s.t. a(x) =y = —1}; (3) the false positives

{(x,y): st. a(x) =1,y = —1}; and (4) the false negatives

{(x,y) : s.t. a(x) == =1,y = 1}. These four cases correspond to loss

function values L(a(x) =1,y =1) = T,, L(a(x) = -1,y = —1) = T,,
Lla(x) =1,y = —1) = Fp, L(a(x) = =1,y = 1) = F, respectively. Then
the decision rule ar(.) reduces to:

P( | 1) T — F
> The intuition is that the evidence in the log-likelihood must be bigger than
our prior biases while taking into account the penalties paid for different
types of mistakes.

log



Bayes rule (1V)

The results in the previous section on edge detection and texture classification
can be derived from decision theory. The priors P(y) specify the probability
that an image patch contains an edge (empirically P(y = 1) ~ 0.05 and

P(y = —1) =~ 0.95). The loss function should be chosen to specify the cost of
making different types of mistakes. For texture classification, the variable y
takes values in a set ), which is called a multiclass decision. The same theory
applies to tasks for which we need to make a set of related but nonlocal
decisions.



Signal detection theory (I)

We now show that an important special case of signal detection theory (Green
& Swets, 1966) — often used as a framework to model how humans make
decisions when performing visual, auditory, and other tasks — can be obtained
as a special case of Bayes decision theory. We consider the two class case,
where y € {£1}, and suppose that the likelihood functions are specified by
Gaussian distributions, P(x|y) = exp{—(x — py)?/(207)}, which differ

by their means (u1, i—1) and their variances (07,02 ). The Bayes rule can be
expressed in terms of the log-likelihood ratio test:

27ro

G(x) = argmax y{~(x— )/ (207) ~log o1 + (x — ji-1)?/(20% 1) + log o2 = T}



Signal detection theory (II)

» This decision rule requires determining whether the data point x is above
or below a quadratic polynomial curve in x. In the special case when the
standard deviations are identical ¢? = o3 (so we drop the subscripts 1,-1),
the decision is based only on whether the data point x satisfies:

2x(p1 — p1) + (i — p3) < 2To?

> This special case, with 07 = 021, is much studied in signal detection
theory (Green & Swets, 1966). It means that the decision is based on a
single function d’ = % This quantity is used to quantify human

performance for psychophysical tasks.



Ideal observer ()

This motivates the idea of an ideal observer. An observer like this has optimal
performance which requires exploiting the statistical properties of the
distribution P(x,y) of the data. A classic example of ideal observer theory
shows that under certain conditions, photoreceptors in the retina are almost
optimal at detecting the photons that reach them (Barlow, 1962; Pelli, 1990).
This takes into account the probability of the photoreceptors firing x if it
receives a photon, P(x|y = 1), and the probability that the photoreceptor fires
spontaneously, P(x|y = —1).



Ideal observer (II)

Ideal observers can also be defined for other vision tasks (Tjan et al., 1995;
Gold et al,. 2012; Trenti et al., 2010; Geisler, 2011). The difficulty, however, is
judging whether humans are adapted to doing the task. It is possible to define
ideal observers when human performance is much worse than the ideal
observers (Watson et al., 1983). Why can this happen? The task may provide
information for which humans are not adapted (e.g., visual inspection of circuit
boards to find deficits). Also, the ideal observers know the distributions P(x, y)
that, for synthetic stimuli, are those chosen by the scientist performing the
experiment and may have little similarity to the natural statistics of stimuli of
the world, which human vision has probably adapted to.



Receiver operating characteristic curve

> Another important concept is the receiver operating characteristic (ROC)
curve. This allows us to study decisions when we do not want to restrict
ourselves to specific priors and loss functions. Instead, we plot the true
positive rate as a function of the false positive rate by allowing the
decision threshold T to vary. For each value T of the threshold, we have a
decision rule ar(.), which results in a fraction of true positives
> xarx)=1 P(xly =1) and false positives 3.\, P(x|y = —1). This
gives a single point on the ROC curve. We plot the curve by allowing T to
vary. Observe that for very large T (as T +— o0), the true positive and
false positive rates will tend to 0. While as T gets very small (T — —c0),
both rates will tend to 1. Hence the ROC illustrates the trade-off between
the two rates.

> Bayes decision theory can be extended in a straightforward manner if the

output y takes multiple values. In particular, it applies when we have a set
of decision variables defined on each lattice site of an image.



Divisive normalization

> An important example is the use of probabilistic models (Wainwright &
Simoncelli, 2000) to account for divisive normalization. This is a
mechanism whereby cells mutually inhibit one another, effectively
normalizing their responses with respect to stimulus inputs. Originally
developed to explain nonlinear responses to contrast in V1 (Heeger, 1992),
divisive normalization has been proposed as a basic cortical computation
that underlies various effects of context, as well as higher-level processe,s
such as attention (Carandini & Heeger, 2011) .

> The probabilistic approach gives a theoretical justification for divisive
normalization in V1. The main idea is that filters with similar preferences
for orientation representing nearby spatial locations in a scene have
striking statistical dependencies, which can be removed by divisive
normalization. Specifically, if we plot the statistics of two linear filters f-, f;
(center and surround), then the magnitudes of fc, fs are coordinated in a
straightforward way, which has a characteristic shape of a bow tie.



Modeling divisive normalization using hidden variables

This can be modeled by assuming there are hidden variables v that affect both
responses and hence induces correlation between the responses. For example, v
could represent the local average image intensity, which could affect the
response of both filters, but after the filter response, it could be made
independent by conditioning on the average intensity. Suppose v has a prior
distribution P(v) = vexp{—v?/2} for v > 0. We have a pair of filters

{li - i = 1,2} that are related to Gaussian models {g1 : i = 1,2}. Then we can
model the activation of the set of filter responses:

2
P k) = [ duP() [] P £))P(&). (20)
i=1
where P(li|v, gi) = d(li — vgi). In this model the filter responses are generated
by independent processes, g1, g2, but then are multiplied by the common factor
v. This is illustrated in the next figure.



Figure for divisive normalization model

g1 g2 g1 g2

Figure 25 : Left: The graphical structure of the divisive normalization model. The
filter responses /1, I, are generated from stimuli g1, g2 and by the common factor v.
The distributions of /1, » are factorized if we condition on v. Right: But if we
integrate out v, then almost all the variables become dependent, as reflected by the
complexity of the graph structure.



Divisive normalization model

> In particular, for each filter we can compute P(gi|/, k). After some
algebra, this is computed to be:

1 g21? 12
&1 eXP{_zazllz T
P(gl‘llv l2) = B(O I/O') ) (21)

where | = \/I? 4+ I2, and B(.,.) is a Bessel function. To get intuition, note
that g1 = h/v and g1 = h/v. So if v is small, then || and |k]| are likely
to be small together, while if v is large, then || and |h| are both likely to
be large.

> Assume that the goal of a model unit is to estimate the g; from the

observed filter responses {/; : i = 1,2}, which gives the nonlinear response
of the cell. It follows, from analysis above, that

. |h]
E h, k) o sign{/ I —_— 22
(g1lh, k) o< sign{h}/|h] e (22)

The \//? + 2 + k term sets the gain and performs the divisive
normalization.



Application to the tilt illusion

» The model has also been applied to explain the classic tilt illusion in
perception (Schwartz et al., 2009; Qiu et al., 2013). In the “simultaneous”
tilt illusion, a set of vertically oriented lines appears to tilt right when
surrounded by an annulus of lines tilted left—an effect called “repulsion.”
But for large differences between the center orientation and the surround
(tilted left), the center vertical lines can appear to tilt left—an effect called
“attraction.” In the model, the population of neurons responding to the
surround tilted lines contributes to divisive normalizing of the neurons
responding to the center stimulus. This results in a change of their neural
tuning curves, which, together with the degree of coupling between center
and surrounds, accounts for repulsion and attraction.

» The suppressive effect of surround contrast on a central region is an
example of local spatial context.



Context and spatial interactions between neurons

» There is considerable evidence that low-level vision involves long-range
spatial interaction,s so that human perception of local regions of an image
can be strongly influenced by their spatial context. Psychophysicists have
discovered many perceptual phenomena demonstrating spatial interactions.

» For example, local image regions that differ from their neighbors tend to
“pop out” and attract attention, while, conversely, similar image features
that form spatially smooth structures tend to get “grouped” together to
form a coherent percept, see chapter figure 12.26 (left panel). Image
properties such as color tend to spread out, or fill in regions, until they hit
a boundary (Grossberg & Mingolla, 1985; Sasaki et al., 2004) as shown in
chapter figure 12.26 (right panel).



Context and spatial Interactions between neurons

> In general, there is a tendency for low-level vision to group similar image
features and make breaks at places where the features change significantly.
These perceptual phenomena are not surprising from a theoretical
perspective since they correspond to low-level visual tasks, such as
segmentation and the detection of salient features. Segmenting an image
into different regions is one of the first stages of object recognition (in the
ventral stream) and a precursor to estimating the three-dimensional
structure of objects, or surfaces, in order to grasp them or avoid them
(dorsal stream).

> Detection of salient features has many uses, including bottom-up attention
(Itti & Koch, 2001). It has been suggested that many of these processes
are performed in V1 (Zhaoping, 2014), although this involves possibly
feedback and interactions between V1 and V2 (Shushruth et al., 2013).



Context figures

Figure 26 : Left: Association fields. The circular alignment of Gabor patches (left)
make it easier to see the circular form in the presence of clutter (right). Right: The
neon color illusion. A bluish color appears to fill in the white regions between the blue
lines, creating the appearance of blue transparent disks.

d




Context electrophysiology

The psychophysical and theoretical studies discussed so far are supported by
single-electrode studies (Lamme, 1995; Lee & Yuille, 2006), which show that
the activities of neurons on monkey area V1 appear to involve spatial
interactions with other neurons. When monkeys are shown stimuli consisting of
a textured square surrounded by a background with a different texture, their
responses over the first 60 msec are similar to those predicted by classic models
(e.g., previous sections), but their later activity spreads in from the boundaries,
roughly similar to predictions of computational models (Yuille, 2006). There is
also a considerable literature on the related topic of nonclassical receptive fields
(Kapadia et al., 2000).



Neural network models

This section discusses neural network models that address these phenomena.
Although the models capture the essence of the phenomena, they are
simplifications in three respects. First, they use simple models of neurons, and
it is currently not possible to compare them directly to real neural circuits.
Second, these models are formulated in terms of lateral, or horizontal,
connections. Third, the performance of these models on natural images is
significantly worse than a human's. There are more advanced computer vision
models, built on similar principles, whose performance starts to approach
human vision (unless high-level cues are present, which humans can exploit).



Probability distributions on graphs

We formulate these models in terms of probability distributions defined over
graphs, where the nodes of the graph represent neurons. This differs from some
of the standard “neural network” models for these types of phenomena, see
(Grossberg & Mingolla, 1985). but our approach has several advantages. First,
this enables us to use a coherent framework that unifies the models in this
section with those we will discuss in later sections. Second, it puts the models
in a form that can be directly related to a class of computer vision models.
Third, this probabilistic formulation is of increasing use in models of artificial
intelligence, cognitive science, and the machine learning and statistical
techniques used to analyze experimental neuroscience data. Fourth, it is
possible to derive many of these neural network models as approximations to
the probability models.



Probabilistic models of neurons

» We first introduce probabilistic models of neurons and show how our
previous linear filter models can be derived as approximations. Next we
introduce neural network models and show their relationship to probability

models. Then we use this material to derive some specific models for a
range of visual tasks.



Single neurons: Probabilistic model and integrate and fire (I)

We have described neurons as linear filters and briefly mentioned thresholds
and nonlinearities. In this section, we provide a more realistic model of a
stochastic neuron, where the neuron has a probability of firing an action
potential. We will show how linear filters, thresholds, and nonlinearities can be
obtained as approximations to this stochastic model. This stochastic model is,
in turn, an approximation, and we refer to the literature for more realistic
models, such as assuming that the probability of firing is specified by a Poisson
process (Rieke et al., 1997). For simplicity, we restrict ourselves to the simpler
stochastic integrate-and-fire model, which is easier to analyze and to relate to
computational models.



Single neurons: Probabilistic model and integrate and fire (II)

In the integrate-and-fire model, a neuron i receives input /; at each dendrite j.
These inputs are weighted by the synaptic strengths wj; and sent along the
dendrites to the soma. At the soma, these weighted inputs are summed linearly
to yield ZJ. wiil;. The probability of firing s; = 1, or not firing s5; = 0, is given
by:

exp{si(>; wili — Ti)}
Tt e (s, wih T} =

P(si|T) =

where T; is a threshold.



Relations to the stochastic model (I)

» To relate this stochastic model to our earlier linear models, we calculate
the probability that the neuron will fire. This is given by a sigmoid
function:

1
= 1

S,'P S,'/ = =0 Wi'l' _ T, . 24
s[go ( |) 1+eXP{ZijjIj_ T,} (; ulJ ) ( )

» Observe that this is also the expected firing rate 3°__ , s;iP(si|I) because

> Pl = P(si = 1) = o (3 wyl — Ti). (25)

5=0,1



Relations to the stochastic model (II)

» By computing the expected firing rate, we obtain a deterministic
approximation to a stochastic neuron. This is a sigmoid function of a
linear weighted sum of the input (minus a threshold).

» The sigmoid function is approximately linear for small inputs, saturates at
value 1 for large positive inputs, and suppresses large negative inputs to 0.
Hence there is a linear regime where the probability of firing is
Zj wiil; — T;. This enables us to recover the linear models used in the
previous section as an approximation.

> Next we modify the model so that it deals with nonlinear image features.
This allows us to relate it to the types of computational models described
in the previous section and will enable us to construct richer models of this
type that can deal with spatial context.



Enhancing the model to allow complex input

» Consider detecting if there is an edge at pixel x. Formulate the problem as
Bayes estimation with conditional distributions P(f(/(x))|s) and priors
P(s) for s € {0,1}. The posterior distribution P(s|f(/(x))) can be
expressed in the form:

P(s|f(I(x))) = %exp{s“og figgg%;:z = 1; + log ﬁg ;)}7

where Z is a normalization constant (chosen so that
>0 P(slf(1(x))) = 1).

» This shows that the posterior distribution for the presence of an edge can
be expressed in the same form. The only difference is that the input is a
nonlinear function of the image instead of the image itself.

» This claim can be justified by expressing
P(f(I(x))s) = {P(f(1(x))Is = 1)}*{P(f(I(x))|s = 0)}'~*,
P(s) = {P(s = 1)}*{P(s = 0)}'*, then substituting these into the
posterior P(s|f(1(x))) = P(f(I1(x))|s)P(s)/P(f(I(x))).



Probability models with context

» Now apply the model to foreground/background classification and modify
it to include spatial context. Intuitively, neighboring pixels in the image
are likely to be either all background or all foreground. This is a form of
prior knowledge that can be learned by analyzing natural images.

» We specify neurons by spatial position X instead of index i. As above, we
have distributions P(f(/(X))|s) for the features f(/(X)) at position X
conditioned on whether this is part of the foreground object s(X) =1, or
not, s(X) = 0. We use the notation S to be the set of the states of all
neurons {s(X)}. We also specify a prior distribution:

P3) = ye(—7 Y O {s(%) — s(7)F}.

X yeN(x)

where v is a constant. This prior uses a neighborhood N(X), which
specifies those spatial positions that directly interact with X in the model.
In graphical terms, the positions X are the nodes V of a graph G, and the
edges & specify which nodes are connected.



Markov structure (1)

> Formally, the edges of the graph define the Markov structure of the
probability distribution P(S). It can be shown that the conditional
distribution of the state s(X) at one position depends only on the states of

positions in its neighborhood N(X). This is the Markov condition:

P(s(X)|S/s(X)) = P(s(<)|{s(7) : ¥ € N(x)}),

where S/s(X) denotes all states in S except s(X).

> In real vision applications, this type of prior, including the size of the
neighborhoods, can be estimated from the statistics of natural images.



Markov structure (I1)

> Next, we define a probability model for the observed image features at
positions X in the image. We use the same models as before, at each
position X:

P(F(I(X))Is) = {P(f(I())ls = DI {P(FU(R))ls = 0)}' .

» We combine these, using independence assumptions, to get a distribution:

P(f(1)|S) = HP(f(/ X))ls) = *eXP{Z %}’

where Z; is a normalization term (which can be calculated directly).



Posterior distribution (I)

» These distributions P(f(1)|S) and P(S) can be combined to get the
posterior distribution P(S|f(T)), which is of form:

PGSIF(T) = 5 ool ~E(S))

where

ES) =~ s 108 pr i =) + 3 X 1Us(3) <))

% X yeN(R)

> The first term of E(S) gives the local cues for foreground or background
(the log-likelihood ratios of the features), while the second term adds the
local context. This context encourages neighboring positions to be either
all foreground or all background. Note that this method of specifying a
distribution P(S) in terms of a function E(S) will keep reoccurring
throughout this section.



Posterior distribution (II)

» This model specifies the posterior distribution for foreground-background
classification using spatial context, and as we will show, similar methods
can be applied to other visual tasks. But there remains the issue of how to
estimate the most probable states, i.e., computing the Bayes estimator.

A

S = argmax P(S|f(1)).

> In the next two sections we discuss neurally plausible algorithms that can
do this. There are two types: (1) stochastic models that are natural
extensions of the probabilistic neural models discussed earlier, which in the
statistics literature are called Gibbs samplers (Liu, 2008), and (2) neural
network models that are based on simplified biophysics of neurons but that
can also, in certain cases, be related to mean field approximations to the
stochastic models.



Graphical model figures
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Figure 27 : Far left: The graphical structure of the Markov model with nearest
neighbor connections. Left: A fully connected graphical model. Right: A
hyper-column structure in which neurons within each column are tuned to different
orientations and inhibit each other. Far right: Edges have excitation (green) along the
direction of the edge and inhibition (red) perpendicular to the edge.



Probabilistic models of groups of neurons. (1)

> Here, we introduce a more general probability distribution. It is also
specified by a model defined over a graph where the nodes correspond to
neurons and the edges to connections between them. But we will not make
any Markov restrictions on the edges, so this model can be fully connected.

» More specifically, we have set of M neurons with states S = (s1y-ee5 SM)
and with input I= (h, ..., In). We specify a Gibbs probability distribution
over the set of activity of all neurons S = (s, ...., s,) as follows. First we
define an energy function:

E(§,7: VT/,Q_‘) = 72 VVUSin — (1/2)Z€k/5k51.
i Kl



Probabilistic models of groups of neurons. (Il)

> This energy contains two types of terms: (1) those of form s;l;, which give
the interactions between the states of the neurons S and the input 7, and
(2) those that specify interactions between the neurons. This energy is
used to specify a Gibbs distribution:

P(3,1) = 5 exp{~E(3, T W, 0)). (26)

> Here Z is a normalization constant chosen to ensure that > ¢ P(S|) = 1.
Note that Gibbs distribution originally arose in statistical physics, to
specify the probability distribution of a physical system in thermal
equilibrium. Here the physical energy of the system is E, and the
distribution can be derived using the maximum entropy principle.



Probabilistic models of groups of neurons. (Il1)

> The weights {w;;}, {0} specify the strength of the interactions between
the neuron and the inputs, and between the neurons and each other. In
particular, the interaction term ), Oxsks) specifies the interactions
between the neurons. If this term is not present, then the distribution
simplifies and can be expressed as a product of independent distributions:

P(S|T) = —exp{z wisil;} = HP(51|I (27)

> Hence in this special case, the neurons act independently and are driven
purely by the input (i.e., there is no context). As a technical point, the
normalization factor in this case can be computed directly as Z =[], Z;,

where Z; = Zi,-:o eXP{Zj wisilj}.



Stochastic dynamics (1)

» Now we specify stochastic dynamics on this model. These dynamics have
two purposes: first, to describe the activities of sets of neurons interacting
with each other; second, to provide algorithms for estimating properties,
such as the most probable configurations of the states S, which can be
used for visual tasks and for making decisions.

» To specify stochastic dynamics, we generalize the stochastic neural model,
equation (23), to deal with a set of neurons. A neuron received input S
from other neurons in addition to direct input from the stimulus T
Consider only the activity of this neuron, fixing the states of all the others.
Then the neurons will have total input of . wl; plus input 37, 6csk
from the other neurons.



Stochastic dynamics (I1)

» Then, extending equation (23), the probability that the cell i fires is:

. 1
P(sill, /) = - exp{si(D>_ wili+ > Ousi)} (28)
! j ki

where the notation S/i means the states {s; : j # i} of all the neurons
except the neuron we are considering. The term Z; is defined so that the
distribution is normalized, so it is given by

Zi = 1+exp{>; wilj + >, ; Owsi}.

» This gives the following dynamics for a group of neurons. At each time, a
neuron is selected at random and fires with a probability specified by
equation (28). This model assumes that no neurons ever fire at the same
time and ignores the time for a spike fired from one neuron to reach other
neurons.



Relations to Gibbs distribution?

How does this stochastic dynamics relate to the Gibbs distribution specified
above? From the statistical perspective, this is an example of Markov Chain
Monte Carlo (MCMC) sampling (Liu, 2008). MCMC refers to a class of
algorithms that explore the state space of S stochastically so that it will
gradually move to configurations that have high probability P(§|_‘) More
precisely, MCMC algorithms are guaranteed to give samples from the Gibbs
distribution — 51, ..., Sy P(S|T). The stochastic update rule in equation (28)
is a special type of MCMC algorithm known as a Gibbs sampler, because it
samples from the conditional distribution P(si|/, §/,-). These samples enable us

to estimate the most probable state of the system 5 = arg max P(5|7), hence
they can estimate the MAP estimator of S and make optimal decisions for
visual tasks.



Learning and Boltzmann machines

To apply these models to visual tasks, we need to specify the weights. One
strategy is purely data driven and consists of learning the weights from training
examples. This is the Boltzmann machine (Ackley et al., 1985) which is out of
scope for this chapter. Another strategy is to specify distributions for specific
visual tasks, and we will give examples in the next few sections.



Dynamical system models of neurons (1)

There is an alternative way to model sets of neurons using dynamical systems
based on simplified models of their biophysics (Rieke et al., 1997; Dayan &
Abbbott, 2001). Pioneering work on this topic was done by Wilson and Cowan
(1972), Grossberg and Mingolla (1968, 1985), Hopfield and Tank (1986),
Abbott and Kepler (1990), and others. There is no space to cover the richness
of these models, and in any case, these lectures concentrate on the probabilistic
formulation. But we will discuss an important subclass of dynamical models
(Hopfield & Tank, 1986) that, as we will show, has very close relations to the
probabilistic approach.



Dynamical system models of neurons (I1)

» These dynamical systems are described as follows (Hopfield & Tank,
1986). A neuron is described by two (related) variables: (1) a continuous
valued variable u; € {—00, 00}, and (2) a continuous variable g; € {0, 1}.
Roughly speaking, u; represents the input to the cell body (soma), both
direct input and input from other neurons and g; describes the probability
that the cell will fire an action potential. These variables are related by the
equations u; = log(qi/(1 — gi)) or, equivalently, by gi = o(u;) (where o(.)
is the sigmoid function).

> The dynamics of the neuron is given by:

dLI,'
g = 7U,‘+ZWijlj+;9iqu- (29)
J

» Here, as before, ZJ. wiil; + Zk Oikqk represent the direct input and the
input from the other neurons.



Dynamical system models of neurons (I11)

This dynamic system continually decreases a function F(§), so that

(dF)/dt < 0. The function F acts as a Lyapunov function for the system in
the sense that it decreases monotonically as time t increases and is bounded
below. The existence of a Lyapunov function for the dynamics guarantees that
the system will converge to a state that minimizes F(g) (note that F(g) will
typically have many minimums, and the system may converge to any one of
them).



Relations between probabilistic models and dynamical system models (I)

» Perhaps surprisingly, there is a very close relationship between the dynamic
systems in equation (29) and the stochastic update in equation (23).
More specifically, the dynamic system is a mean field approximation to the
stochastic dynamics. Mean field theory (MFT) was developed by
physicists as a way to approximate stochastic systems.

» To explain this relationship, we first define the mean field free energy F(§):

Zvvljqul (1/2)2911‘7:%"'2{‘7:'0%‘7: +(1—gqi)log(1—gi)}.

(30)
> Next we specify dynamics by performing steepest descent on the free
energy (multiplies by a positive factor):
dgi _ 9F(q)
— 1-— 31
g = a(l—a)—5 o (31)



Relations between probabilistic models and dynamical system models (1)

> Interestingly, these are identical to the dynamical system in equation (29).
This can be seen by introducing a new variable u; = log i /(1 — gi), which
implies that g; = o(u;). Note that
OF |0qi = —>_; Wiil; = 3,059, + log qi/(1 — ai), ui = log qi/(1 — i),
and dqi/qi(1 — qi) = du;.

» Equation (31) implies that the dynamical system decreases the free energy
F(g) monotonically with time t. This is because
dF /dt = —3,(8F /04:)(9q:/dt) = = 32, ai(1 — qi)(9F /8q:)*. Hence
F(g) is a Lyapunov function for equations (29, 31), and so the dynamics
converges to a fixed point.



Relations between probabilistic models and dynamical system models (III)

This shows that there is a close connection between the neural dynamical
system and minimizing the mean field free energy. In turn, the mean field free
energy is related to deterministic approximations to stochastic update methods
like Gibbs sampling (Amit, 1992; Hertz, 1991). This connection is technically
advanced and is not needed to understand the rest of this chapter. Briefly, the
mean field free energy F(") is the Kullback-Leibler divergence

F(Q)=>¢z Q(S) log 2L P su between the distribution P(S|I) and a factorized

distribution Q(S) = I q, (1 — g;)'~% (plus an additive constant). Hence the
dynamical system seeks to find the factorized distribution ©(§) that best
approximates P(S|1) by minimizing the Kullback-Leibler divergence. In this
approximation the response g; is an approximation to the expected response
D $;P(S|T). The connections between mean field theory and neural models
was described in Yuille, 1987). For technical discussions about mean field
theory and Gibbs sampling see (Yuille, 2011).



Lecture 12.5

» This lecture describes how groups of neurons can perform edge detection,
edge grouping, stereo, and motion.

» We also introduce weak methods for cue combination.

» This lecture includes the exercises: (12.5.1) Hopfield network for binocular
stereo, and (12.5.2) Cue combination.



The line process model (1)

> Our first example is the classic line process model (Geman & Geman,
1984; Blake & Zisserman, 2003; Mumford & Shah, 1989), which was
developed as a way to segment images. It has explicit line process
variables that “break” images into regions where the intensity is piecewise
smooth. Our presentation follows the work of Koch et al. (1986), who
translated it into neural circuits.

» The model takes intensity values T as input, and outputs smoothed
intensity values. But this smoothness is broken at places where the
intensity changes are too high. The model has continuous variables J
representing the intensity, and binary-valued variables T for the line
processes (or edges). The model is formulated as performing maximum a
posteriori (MAP) estimation. The algorithm for estimating MAP is a
neural network model that can be derived from the original Markov model
(Geman & Geman, 1984) by mean field theory (Geiger & Yuille, 1991).
Note that in this model, the variables do not have to represent intensity.
Instead they can represent texture, depth, or any other property that is
spatially smooth except at sharp discontinuities.



The line process model (II)

> For simplicity_awe present the weak membrane model in one dimension.
The input is | = {/(x) : x € D}; the estimated, or smoothed, image is
J = {J(x) : x € D}; and the line processes are denoted by
= {I(x) : x € D}, where I(x) € {0,1}.

» The model is specified by a posterior probability distribution:

P(I,TT) = 3 exp{~E[,T: 11/T),

where

EQLT: 1 = S (100 —J()) A (St 1) G0 (1-1())+B Y 1(x).

X



The line process model (III)

The first term ensures that the estimated intensity J(x) is close to the input
intensity /(x). The second encourages the estimated intensity J(x) to be
spatially smooth (e.g., J(x) & J(x + 1)), unless a line process is activated by
setting /(x) = 1. The third pays a penalty for activating a line process. The
result encourages the estimated intensity to be piecewise smooth unless the
input /(x) changes significantly, in which case a line process is switched on and
the smoothness is broken. The parameter T is the variance of the probability
distribution and has a default value T = 1.



The line process model illustration

Figure 28 : A representation of the line process model (left) compared to a real
neural network (center). On the right, the original image (upper left), the image
corrupted with noise (upper right), and the image estimated using the line process
model (bottom).



The line process model and neural circuits (1)

> This model can be implemented by a neural circuit (Koch et al., 1986).
The connections between these neurons is shown in the previous figure. To
implement this model Koch et al., (1986) proposed a neural net model
that is equivalent to doing mean field theory on the weak membrane MRF
(as discussed earlier) by replacing the binary-valued line process variables
I(x) by continuous variables g(x) € [0, 1] (corresponding roughly to the
probability that the line process is switched on).

> This gives an algorithm that updates the regional variables J and the line
variables @ in a coupled manner. It is helpful, as before, to introduce a new

variable i which relates by g(x) = and u(x) = T log lj(;()x).

1
Ttexp{—u(x)/T}



The line process model and neural circuits (I1)

dJ(x)

g~ 20— 1(x)
= —2A{(1 - g(x))(J(x) = J(x + 1)) + (1 — q(x — 1))(J(x) — J(x = 1))}, (32)
qu(tX) — %q(x)(l — q()){AJ(x+1) — J(x))* = B — Tlog . alx () )} (33)
dlil(tX) = —u(x) + AUJ(x +1) = J(x))* ~ B. (34)

The update rule for the estimated intensity J behaves like nonlinear diffusion,
which smooths the intensity while keeping it similar to input I. The diffusion is
modulated by the strength of the edges . The update for the lines g is driven
by the differences between the estimated intensity; if this is small, then the
lines are not activated.



The line process model and neural circuits (I11)

This algorithm has a Lyapunov function L(j, G) (derived using mean field
theory methods) and so will converge to a fixed point, with

LJ.@) = D20() = S0P + AU+ 1) = JEF (3 = ) + 8 3D
+TZ{q(x log a(x) + (1 — q(x)) log(1 — q(x))}. (35)



Relations to electrophysiology (1)

» There is some evidence that a generalization of this models roughly
matches the electrophysiological findings for those types of stimuli. The
generalization is performed by replacing the intensity variables /(x), J(x)
by a filterbank of Gabor filters so that the weak membrane model enforces
edges at places where the texture properties change (Lee et al., 1992).
The experiments, and their relation to the weak membrane models are
reviewed in (Lee & VYuille, 2006). The initial responses of the neurons, for
the first 80 msec, are consistent with the linear filter models described
earlier. But after 80 msec, the activity of the neurons changes and appears
to take spatial context into account.

> While the weak membrane model is broadly consistent with the perceptual
phenomena of segmentation and “filling in,” the types of filling in, their
dynamics, and the neural representations of contours and surface are
complicated (von der Heydt, 2002; Komatsu, 2006). Exactly how contour
and surface information is represented and processed in cortex is an active
topic of research (Grossberg & Hong, 2006; Roe et al., 2012).



Relations to electrophysiology (I1)

> The findings of the electrophysiological experiments are summarized as
follows:
(1) There are two sets of neurons, with one set encoding regional
properties (such as average brightness), and the other set coding boundary
location (in agreement with J and / variable in the model, respectively).
(2) The processes for computing the region and the boundary
representations are tightly coupled, with both processes interacting with
and constraining each other (as in the dynamical equations above).
(3) During the iterative process, the regional properties diffuse within each
region and tend to become constant, but these regional properties do not
cross the region (in agreement with the model).
(4) The interruption of the spreading of regional information by
boundaries results in sharp discontinuities in the responses across two
different regions (in agreement with the model). The development of
abrupt changes in regional responses also results in a gradual sharpening
of the boundary response, reflecting increased confidence in the precise
location of the boundary.

> These findings are roughly consistent with neural network implementations
of the weak membrane model. But other explanations are possible. For
example, the weak membrane model requires lateral (sideways)
interaction, and it is possible that the computations are done hierarchically
using feedback from V2 to V1.



Relations to electrophysiology illustration

wﬂpuu\l-lljlfhl ﬂ.n".l*\'"lll”hu.
Ww.xnmuuﬂuﬁw\i!cﬂmwm

!__r M.Wnﬂﬁ.wum
Illﬂuﬂn{m t_p rﬂ Ih‘lll

= ||

m.llh.Whlrl.wI\IMlemnllJﬁllrl\‘.ll

Figure 29 : The stimuli for the experiments by TS Lee and his collaborators (Lee &

Yuille, 2006).



Edge detection with spatial context (I)

» Our second example is to develop a model for detecting edges using spatial
context. This relates to the phenomena known as association fields, see
chapter figure 12.26 (left panel), where Gabor filters that are spatially
aligned (in orientation and direction) get grouped into a coherent form.

» For this model, we have a set of neurons at every spatial position x, each
tuned to a different angle 6; : i = 1,...,8, and a default cell at angle 6.
The first cells are designed to detect edges at each orientation — i.e., they
can be driven by the log-likelihood ratio of an edge detector at orientation
0; at this position. The default cell is a dummy that is intended to fire if
there is no edge present at this position. This organization forms a
population of cells arrayed according to orientation (similar to a
hypercolumn in V1).



Edge detection with spatial context (II)

We define a Gibbs distribution for the activity sy g, of the cells. The energy
function E(S) contains four types of terms: The first term,

S 38 sxié(fiy ..., fur), represents the local evidence for an edge at each
point and for its orientation. The second term 3 (3% s.; — 1)2., is intended
to ensure that only one cell is active at any spatial position. This corresponds
to an inhibitory interaction between cells in the same hypercolumn. The cells in
the hypercolumn give alternative, and inconsistent, interpretations of the input
— hence only one of them can be correct. The third term encourages edges to
be continuous and change their directions smoothly. To define this term, we let
5,- = (cos 0;,sin 6;) and 57— = (—sin 6;,cos ;) denote the tangent to the edge
and the normal. This term encourages there to be edges in the tangent
direction, while the next term discourages them in the normal direction. This
term is motivated by the intuition that curves are spatially smooth and can be
justified by the statistics of natural images (Geisler & Perry, 2009; Elder &
Goldberg, 2002).



Edge detection with spatial context (llI)

L 8 T
We write it as 3, D203 Wik,).(v.6,)5.iSv.j» Where

Wil6n.0v0) = — exp{—10; — 0|/ Ki} exp{—|x — y|/ Ko} exp{—|%y — 0|/ K3} (36)

and Xy is the unit vector in direction x — y. This term encourages edges that
are in similar directions (first term) and nearby in position (second term),
where the edge orientation is similar to the difference x — y between the two
points. This term is excitatory. The fourth and final term is inhibitory and
discourages edges from being parallel to each other (if they are nearby). It is

: 8 N
written as > > 7., W(.00).(y.0,)5%.i5v.j- Here,

Wi o0 = exp{—Ix = y|/Ka} exp{~I5y — 6 |} (37)



Edge detection with spatial context (IV)

> The first term says this interaction decreases with distance. The second
term discourages edges which are parallel to each other.

> This gives an overall energy:

8

8
E(5) = Z Z S, iP(fy .oy f) + Ko Z(Z Sei — 1)2

X = x i=0

8 8
+Ki Z Z VV(Z;Q/.),(yﬂj)Sx,iSy,j + K2 + Z Z W(Ig,e,-),(y,ej)sx,isyyj- (38)

X,y Ij=1 X,y ihj=1

> This yields a probability:

P3IF) = 5 exp{~E(3)).

» This model can be implemented in neural networks by defining either
stochastic or deterministic neural dynamics (i.e., either Gibbs sampling or
mean field theory). The resulting update equations are more complex than
those defined for our earlier examples but have the same basic ingredients.
Models of this type can qualitatively account for associative field
phenomena.



Stereo models

This section introduces computational models for estimating depth by binocular
stereo. The key problem to solve is the correspondence problem between the
inputs in the two eyes to determine the disparity. Then the depth of the points
in space can be estimated by trigonometry. (This presupposes that the eyes are
calibrated, meaning that the distance between the eyes and the direction of
gaze are known, which is beyond the scope of this chapter.) Julesz (1971)
showed that humans could perceive depth from stereo if the images consisted
of random dot stereograms, which minimize the effect of feature similarity
cues, suggesting that human vision can solve this task by relying mainly on
geometric regularities (assumed about the structure of the world). Other
researchers (Bulthoff & Mallot, 1988) have studied human estimation of
surface shape quantitatively and showed, among other things, bias toward
fronto-parallel surfaces.



Stereo: The correspondence problem

Most stereo algorithm address the correspondence problem by assuming that
(1) image features in the two eyes are more likely to correspond if they have
similar appearance, and (2) the surface being viewed obeys prior knowledge,
such as being piecewise smooth (e.g., like the weak membrane model). The
first assumption depends on local properties of the images, while the second
assumption uses nonlocal context. In an earlier lecture, we discussed how a
population of Gabor filters could be used to match local image features. Here
we describe how context can be used to impose prior knowledge about the
geometry of the scene. We will study classic models, that assume that the
surface is piecewise smooth. This leads to a Markov field model that includes
excitatory connections, imposing the geometric constraints, with inhibitory
connections that prevent points from one eye having more than one match in
the second eye. This yields an algorithm that involves cooperation to
implement the excitatory constraints, and competition to deal with the
inhibitory constraints. This is consistent with findings from recent
electrophysiological experiments (Samonds et al., 2009),(Samonds et al.,
2012), which complement experiments (Ohzawa et al., 1990) that tested the
local stereo models described earlier.



A cooperative stereo model (1)

> We now specify a computational model for stereo that for simplicity, we
formulate in one dimension. There is a long history of this type of model,
starting with the cooperative stereo algorithm (Dev, 1975; Marr & Poggio,
1976), and current computer vision stereo algorithms are mostly designed
on similar principles.

» We specify the left and right images by TL, Tr and denote features
extracted from them by f(I.) = {f(x) : x. € D},
f(Ir) = {f(xr) : xr € Dr}. We define a discrete-valued correspondence
variable V/(x., xr) so that if V(x., xg) = 1, the features at x;, xg in the
two images correspond, and hence the disparity is x; — xg. If the features
do not match, then we set V(x.,xr) = 0. We encourage all data points to
match one other data point, but allow some data points to be unmatched
and others to match more than once (by paying a penalty).



A cooperative stereo model (I1)

-

We specify a distribution P(V|7 (1), f(Ir)) = exp{—E(\?; F(IL), F(Ir))/ T1,
where the energy E(V; f(I.), f(Ir)) is given by.

E(V; F(IL), f(IR)) = > V(xi, xg)M(f(x1), f(xr))

XL>sXR

+A Z(Z V(XL,XR) - 1)2 + AZ(Z V(XL,XR) - 1)2

xR XL

FCY Y D Vi)V {lw —x) — (e =y} (39)

XLXR y EN(x) yREN(xR)



A cooperative stereo model (I11)

The first term imposes matches between image points with similar features;
here M(.,.) is a measure that takes small values if f(x.), f(xgr) are similar and
large values if they are different. We will discuss at the end of this section how
M(f(x.), f(xr)) relates to the model for local stereo discussed earlier. The
second two terms penalize image points that are either unmatched or matched
more than once. The third term encourages the disparities, x, — xr, to be
similar for neighboring points (here N(.) defines a spatial neighborhood as
before). These models can be applied to two-dimensional images by solving the
correspondence problem for each epipolar line separately (by maximizing
P(V|f(I.), (Ir))). This is shown in the figure that follows. The parameter T
is the variance of the model, as for the line process model, and has default
value T = 1.



A cooperative stereo model illustration

uonqyul

Figure 30 : Far left and center: The geometry of stereo. A point P in 3-D space is
projected onto points PL and PR. The projection is specified by the focal points OL,
OR, and the directions of the cameras’ gaze (the camera geometry). The geometry of
stereo enforces that points in the plane specified by P, OR, OL must be projected onto
corresponding lines EL, ER (the epipolar line constraint). If we can find the
correspondence between the points on epipolar lines, then we can use trigonometry to
estimate their depth, which is (roughly) inversely proportional to the disparity, which is
the relative displacement of the two images. Far right: Binocular stereo requires
solving the correspondence problem, which involves excitation (to encourage matches
with similar depths/disparities) and inhibition (to prevent points from having multiple
matches).



A cooperative stereo model (1V)

> We obtain a neural circuit model by performing mean field theory on
P(V|f(IL),f(Ir)). This replaces V(x.,xg) € {0,1} by continuous-valued

q(xt,xr) € [0,1] and an1 associated variable u(x..xg) = T log %

Trexp{—u( xR)]
» The update equation is:

with g(xi, xg) =

L) 0, x8) = M(F ), F(x0))

—2A( Y qlx,yr) — 1) = 2A(D>  q(yi, xe) — 1),

YRZXR YLFXL

-2C Y > alyr){we —x) = (vr — y) ¥ (40)

yLEN(x) yrEN(xR)

> This update includes the standard integration term (first term), and the
second term encourages matches where the features agree. There is also
inhibition between competing matches (the third and fourth term), and
excitation for matches that are consistent with a smooth surface (last
term).



A cooperative stereo model: Interactive demo

There is a variant of this algorithm that is a discrete Hopfield network which
attempts to minimize the energy E(V; f(I.), f(Ir)) in equation (39). The
algorithm starts by assigning initial values, 0 or 1, to each state variable
V/(xc, xr). The algorithm proceeds by selecting a state variable, changing its
value (e.g., changing V(xi,xr) =1 to V(xi,xr) = 0), calculating if this
change reduces the energy E(\7; 1?(7;_), F(TR)) and keeping the change if it
does. This process repeats until the algorithm converges (i.e., all possible
changes raise the value of the energy).



A cooperative stereo model and the local model

How does the cooperative stereo algorithm relate to our earlier algorithm for
computing stereo disparity locally? Recall that the algorithm estimated the
disparity at a single point by having a set of neurons tuned to different
disparities {D; : i = 1, ..., N}, summing the votes v(D;) for each disparity by
equation (14), and selecting the disparity with the most votes. Using the
cyclopean coordinate system (Jules, 1971), we express the disparity by

D(x) = 2(xr — x), where x = %(xg + x.). At each point x we specify a
population of neurons that encodes the votes v(D(x)) for the different
disparities. Then, instead of using winner-take-all to make a local decision, we
feed the responses v(D(x)) back into cooperative stereo algorithm by defining
M(f(x.), f(xr)) = exp{—v(3(xr — x.))} (the negative exponential exp{—} is
required so the M(f(x.), f(xr)) is small if the vote for disparity

D(x) = %(xr — x¢) is large).



A cooperative stereo model and electrophysiology

Analyses of electrophysiological studies (Samonds et al., 2009),(Samonds et al.,
2012) were in general agreement with the predictions of this type of stereo
algorithm. In particular, studies showed that neural population responses
included excitation between cells tuned to similar disparities at neighboring
spatial positions as well as inhibition between cells tuned to different disparities
at the same position. In addition, Samonds et al. (2013) implemented a
variant of the stereo algorithm described above and showed that it could
account for additional phenomena, such as sharper tuning to the disparity for
larger stimuli and performance on anticorrelated stimuli (where the left and
right images have opposite polarity).



A cooperative stereo model and electrophysiology illustration

Model predicts tuning curve sharpening over time
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Figure 31 : Experiments for testing stereo algorithms (Samonds et al., 2009, 2012).
Left: The experimental setup. Right: The experiments give evidence for excitation
between similar disparity and inhibition to prevent multiple matches.
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Motion

Similar models have been applied to a range of motion phenomena. Early
computational studies (Ullman, 1979) showed that several perceptual
phenomena of long-range motion could be described by a "minimal mapping”
theory that uses a slowness prior. Subsequent work showed that smoothness
priors accounted for findings on short-range motion (Hildreth, 1984), including
the surprising fact that an ellipse rotating in the image plane is perceived to
move non-rigidly. Yuille et al. (1998) qualitatively showed that a
slow-and-smooth prior could account for a large range of motion perceptual
phenomena — including motion capture and motion cooperation — for short-
and long-range motion. Weiss and his collaborators showed that slow (Weiss &
Adelson, 1998) and slow-and-smooth priors (Weiss et al., 2002) could explain
other short-range motion phenomena, such as how percepts can change
dramatically as we alter the balance between the likelihood and prior terms
(i.e., for some stimuli the prior dominates the likelihood and vice versa).



Motion

All these models combine local estimates of the motion, such as those
described in the previous section, with contextual cues implementing
slow-and-smooth priors. They can be formulated using the same mathematical
techniques. See http://www.michaelbach.de/ot/mot-motionBinding/ to
see how spatial context can be affected by other cues such as occlusion. It is
also possible to perceive three-dimensional structure by observing a motion
sequence (somewhat similar to binocular stereo) as can be seen in
http://michaelbach.de/ot/mot-ske/.


http://www.michaelbach.de/ot/mot-motionBinding/
http://michaelbach.de/ot/mot-ske/

Motion and time

The perception of motion can be strongly influenced by its history and not
merely by the change of image from frame to frame. For example, Anstis and
Ramachandran(1987) demonstrated perceptual phenomena where motion
perception seems to require a temporal coherence prior in addition to the slow
and smoothness priors described earlier in this section. Similarly, Watamaniuk
et al. (1995) demonstrated that humans could detect a coherently moving dot
despite the presence of many incoherently moving dots. These classes of
phenomena can be addressed by models that make prior assumptions about
how motion changes over time. These can be performed (Yuille et al., 1998) by
adapting the Bayes-Kalman filter (Kalman, 1960; Ho & Lee, 1964) filter which
gives an optimal way to combine information over time.



Bayes-Kalman filter (I)

» The task of the Bayes-Kalman filter is to estimate the state x; of a system
at time t dependent on a set of observations y;, ..., 1 (e.g., x; could be
the position of an airplane and y; a noisy measurement of the airplane's
position at time t). The model assumes a probability distribution
P(xt4+1]xy) for how the state changes over time and a likelihood function
P(yt|x:) for the observation.

» The task is to estimate the state x; of a system at time t dependent on a
set of observations y, ..., y1 (e.g., x: could be the position of an object
and y; a noisy measurement of the object position at time t). The model
assumes a probability distribution P(x¢+1|x,) for how the state changes
over time and a likelihood function P(y:|x;) for the observation. This can
be formulated by a Markov model, where the observations y;, ..., y1 and
states xi, ..., x1 are represented by the blue and red dots, respectively (the
lower and upper dots if viewed in black and white).



Bayes-Kalman filter (II)

> The purpose of Bayes-Kalman is to estimate the distribution P(x;|Y:) of
the state x; conditioned on the measurements Y; = {ys,...,y1} up to time
t. It performs this by repeatedly performing the following two steps, which
are called prediction and correction. The prediction uses the prior
P(xe+1]x¢) to predict distribution P(x¢41|Y:) of the state at t + 1:

P(xe+1| Ye) :/dxtP(Xt+1|xt)P(Xt\Yt). (41)

» The correction step integrates the new observation y;;1 to estimate
P(Xt+1|Yt+1) by:
P(}’t+1|Xt+1)P(Xt+1| Yt)
P(xes1|Yer1) = : 42
(x| Vo) Py (42)
» Bayes-Kalman is initialized by setting P(x1|y1) = P(y1|x1)P(x1)/P(y1)
where P(x1) is the prior for the original position of the object at the start
of the sequence. Then equations (41, 42) are run repeatedly. The effect of
prediction is to introduce uncertainly about the state x;, while correction
reduces uncertainty by providing a new measurement.




Bayes-Kalman filter: Figures

Figure 32 : Left: Graph illustrating the unobserved states (red) and the observed
states (blue) as a function of time. The airplanes true positions are shown in red, and
their observations (biased) are shown in blue. The Bayes-Kalman filter integrates
observations to make estimate the true state using prior probabilities. Right:
Bayes-Kalman updates a probability distribution for the estimated position of the
target. The variance of the distribution is illustrated by the one-dimensional figure (on
the right) and the size of the circle (red, blue, or green). In the prediction stage
(middle) the variance becomes large, and after the measurement, the variance
becomes smaller.
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Summary of models with context

This section illustrated how neural networks and Markov models could be used
to apply context to visual tasks. We concentrated on edge detection,
segmentation, and binocular stereo. We stressed how context can include
excitatory and inhibitory interactions. And how inference can be performed
using stochastic neurons (e.g., Gibbs sampling) or dynamic neural networks
(e.g., mean field approximations). These models have some relations to
psychophysics and electrophysiology. But we stress that detailed biological
evidence in favor of these models remains preliminary due to the current
limitations of experimental techniques. We note that current computer vision
algorithms that address similar visual tasks are more complex although based
on similar principles (Blake et al., 2011).



Cue coupling

> This section describes models for coupling different visual cues.

> The ideas in this section are logical extensions of the ideas in the earlier
sections. But we are now addressing more complex aspects of vision, so
the techniques and the tools become more complex and more abstract as
we begin to reason about surfaces, objects, and their relations.



Vision modules and cue combination

> Quantifiable psychophysics experiments for individual cues are roughly
consistent with the predictions of the types of models discussed in the
previous two sections— see (Bulthoff & Mallot, 1988; Cumming et al.,
1993) — but with some exceptions (Todd et al., 2001).

» But how are different visual cues combined?

» The most straightforward manner is to use a separate module for each cue
to compute different estimates of the properties of interest, e.g., the
surface geometry, and then merge these estimates into a single
representation. This was proposed by Marr (Marr, 1982) who justified this
strategy by invoking the principle of modular design.

> Marr proposed that surfaces should be represented by a 2 1/2D sketch
that specifies the shape of a surface by the distance of the surface points
from the viewer. A related representation, intrinsic images, also represents
surface shape together with the material properties of the surface.



Cue coupling from a probabilistic perspective

> We consider the problem of cue combination from a probabilistic
perspective (Clark & Yuille, 1990).

> This suggests that we need to distinguish between situations when the
cues are statistically independent of each other and situations when they
are not. We also need to determine whether cues are using similar, and
hence redundant, prior information.

> These considerations lead to a distinction between weak and strong
coupling, where weak coupling corresponds to the traditional view of
modules, while strong coupling considers more complex interactions. To
understand strong coupling, it is helpful to consider the causal factors that
generate the image.

» Note that there is strong evidence that high-level recognition can affect
the estimation of three-dimensional shape, e.g., a rigidly rotating inverted
face mask is perceived as nonrigidly deforming face, while most rigidly
rotating objects are perceived to be rigid.



Combining cues with uncertainty

» We first consider simple models that assume the cues compute
representations independently, and then we combine their outputs by
taking linear weighted combinations.

» Suppose there are two cues for depth that separately give estimates
S, 55. One strategy to combine these cues is by linear weighted
combination yielding a combined estimate S™:

§* = wlgf + w2§2*,
where w1, w2 are positive weights such that w1 +w> = 1.

> Landy et al. (1995) reviewed many early studies on cue combination and
argued that they could be qualitatively explained by this type of model.
They also discussed situations when the individual cues did not combine as
well as “gating mechanisms” that require one cue to be switched off.



Case where weights are derived from uncertainties

> An important special case of this model is when the weights are measures
of the uncertainty of the two cues. This approach is optimal under certain
conditions and yields detailed experimental predictions, which have been
successfully tested for some types of cue coupling (Jacobs, 1999; Ernst &
Banks, 2002), see (Cheng et al., 2007; Gori et al., 2008) for exceptions.

o2

> If the cues have uncertainties o2, 03, we set the weights to be wy = 702502
1 2
2
— _ %1
and wp, = Tiol

» The cue with lowest uncertainly has highest weight.
» This gives the linear combination rule:

2 2

3* [op} 3* (oF] a*
S = > 251 + 2 252.
o1 + o3 o1 + 035




Optimality of the linear combination rule (1)

The linear combination is optimal for the following conditions:

1. The two cues have inputs {5, 1 i =1,2} and outputs S related by
conditional distributions {P(C;|S) : i = 1,2}.

2. These cues are conditionally independent so that

P(Ci1, G5|S) = P(C1|S)P(C2|S) and both distributions are Gaussians:

| G -5
PIEIIS) = + ol 12T,
1
2o 1 G — SP?
P(C2|5):Zexp{—7‘ 2202 | }
2

3. The prior distribution for the outputs is uniform.



Optimality of the linear combination rule (II)

> In this case, the optimal estimates of the output S, for each cue
independently, are given by the maximum likelihood estimates:

S; =arg max P(Ci|S) =G, S =arg max P(C|S) = Go.
> If both cues are available, then the optimal estimate is given by:
S* = argmax P(C1, G|S) = argmax P(C1|S)P(C2|S)
S 5

2 2
(o) = g1 =
= G+ 5 Co,

2 2 2
o1+ o3 o1+ o3

which is the linear combination rule by setting S; =Ciand S5 = G



Optimality of the linear combination rule: lllustration
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Figure 33 : The work of Ernst and Banks shows that cues are sometimes combined
by weighted least squares, where the weights depend on the variance of the cues.
Figure adapted from Ernst & Banks (2002).



Bayesian analysis: Weak and strong coupling

> We now describe more complex models for coupling cues from a Bayesian
perspective (Clark & Yuille, 1990; Yuille & Bulthoff, 1996), which
emphasizes that the uncertainties of the cues are taken into account and
the statistical dependencies between the cues are made explicit.

» Examples of cue coupling, where the cues are independent, are called
“weak coupling” in this framework. In the likelihood functions are
independent Gaussians, and if the priors are uniform, then this reduces to
the linear combination rule.

» By contrast, “strong coupling” is required if the cues are dependent on
each other.



The priors: Avoiding double counting

» Models of individual cues typically include prior probabilities about S. For
example, cues for estimating shape or depth assume that the viewed scene
is piecewise smooth. Hence it is typically unrealistic to assume that the
priors P(S) are uniform.

» Suppose we have two cues for estimating the shape of a surface, and both
use the prior that the surface is spatially smooth. Taking a linear weighted
sum of the cues would not be optimal, because the prior would be used
twice. Priors introduce a bias to perception, so we want to avoid doubling
this bias.

» This is supported by experimental findings (Bulthoff & Mallot, 1988) in
which subjects were asked to estimate the orientation of surfaces using
shading cues, texture cues, or both. If only one cue, shading or texture,
was available, subjects underestimated the surface orientation. But human
estimates were much more accurate if both cues were present, which is
inconsistent with double counting priors (Yuille & Bulthoff, 1996).



Avoiding double counting: Experiments
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Figure 34 :  Cue coupling results that are inconsistent with linear weighted average
(Bulthoff et al., 1990). Left: If depth is estimated using shading cues only, then
humans underestimate the perceived orientation (i.e., they see a flatter surface).
Center: Humans also underestimate the orientation if only texture cues are present.
Right: But if both shading and texture cues are available, then humans perceive the
orientation correctly. This is inconsistent with taking the linear weighted average of
the results for each cue separately. Figure adapted from Bulthoff et al. (1990).



Avoiding double counting: Probabilistic analysis (I)

> We model the two cues separately by likelihoods P(C;|S), P(C2|S) and a

prior P(S). For simplicity we assume that the priors are the same for each
cue.

» This gives posterior distributions for each visual cue:

P(5|Cy) = M P(5|Cy) = P(C|S)P(S)
P(G) P(C)

» This yields estimates of surface shape to be §1* = arg maxg, P(§|61) and
Sy =arg maxg, P(5|C,).



Avoiding double counting: Probabilistic analysis (II)

» The optimal way to combine the cues is to estimate S from the posterior
probability P(S|Ci, G):

_ PG GISP(S)

P(§|61,62) P(C‘ E)
1, G

> If the cues are conditionally independent, P(6|§) = P(a\g)P( 62)|§)
then this simplifies to:

_ P(GIB)P(GIDPE)

P(§|61,62) P(& (:._)
1, L2




Avoiding double counting: Probabilistic analysis (1)

» Coupling the cues, using the model in the previous slide, cannot
correspond to a linear weighted sum, which would essentially be using the
prior twice (once for each cue).

» To understand this, suppose the prior is P(S) = exp{ |5 S”‘ }. Then,

setting t1 = 1/0%,t, = 1/03,t, = 1/03, the opt|ma| comblnat|on is

& _ 16455,
B titi+tp

combination of the two cues (i, (> and the mean S, of the prior.

, hence the best estimate is a linear weighted

» By contrast, the estimate using each cue individually is given by

2x _ tCi+t,5, _ 0G+tp5,
5= tttat+tp and 52 T ottty



Lecture 12.6

» This lecture discusses the dependencies between visual cues, and how
these can be modeled by graphical models, often with causal structure.

» We also briefly discuss how the models in these lectures can fit with
theories of high-level vision.



Cue dependence and causal structure (1)

» Visual cues are rarely independent.

> In the flying carpet example, the perception of depth is due to perspective,
segmentation, and shadow cues interacting in a complex way. The
perspective and segmentation cues determine that the beach is a flat
ground plane. Segmentation cues must isolate the person, the towel, and
the shadow. Then the visual system must decide that the shadow is cast
by the towel and hence presumably must lie above the ground plane.
These complex interactions are impossible to model using the simple
conditional independent model described above.



Cue dependence and causal structure (I1)

» The conditional independent model is also problematic when coupling
shading and texture cues (Bulthoff & Mallot, 1988). This model for
describing these experiments presupposes that it is possible to extract cues
61, G directly from the image | by a preprocessing step that computes
61(') and 62(')

» This requires decomposing the image | into texture and shading
components. This decomposition is practical for the simple stimuli used in
(Bulthoff & Mallot, 1988). But in most natural images, it is extremely
difficult, and detailed modeling of it lies beyond the scope of this chapter.



Causal structure: Ball-in-a-box

» The “ball-in-a-box" experiments (Kersten et al., 1997) suggest that visual
perception does seek to find causal relations underlying the visual cues.

> In these experiments, an observer perceives the ball as rising off the floor
of the box only if this is consistent with a cast shadow.

> To solve this task, the visual system must detect the surface and the
orientation of the floor of the box (and decide it is flat), detect the ball,
and estimate the light source direction, and the motion of the shadow.

> |t seems plausible that in this case, the visual system is unconsciously
doing inverse graphics to determine the most likely three-dimensional
scene that generated the image sequence.



Causal structure: Ball-in-a-box figure
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Figure 35 : In the “ball-in-a-box" experiments, the motion of the shadow affects the
perceived motion of the ball. The ball is perceived to rise from the ground if the
shadow follows a horizontal trajectory in the image; but it is perceived to move
towards the back of the box if the shadow follows a diagonal trajectory. See
http://youtu.be/hdFCJepvJXU. Left: The first frame and the last frames for the two
movies. Right: The explanation is that the observer resolves the ambiguities in the
projection of a three-dimensional scene to perceive the 3D trajectory of the ball
(Kersten et al., 1997).


http://youtu.be/hdFCJepvJXU

Directed graphical models

» Directed, or causal, graphical models (Pearl, 1988) offer a mathematical
language to describe these phenomena. These are similar to the
“undirected” graphical models used earlier, because the graphical structure
makes the conditional dependencies between variables explicit, but the
causal models differ in that the edges between nodes are directed.

> See Griffiths & Yuille (2006) for an introduction to undirected and
directed graphical models from the perspective of cognitive science.



Formal directed graphical models

> Directed graphical models are formally specified as follows. The random
variables X, are defined at the nodes ;1 € V of a graph.

> The edges £ specify which variables directly influence each other. For any
node u € V, the set of parent nodes pa(p) are the set of all nodes v € V
such that (i, v) € £, where (1, ) means that there is an edge between
nodes 1 and v pointing to node p1. We denote the state of the parent
node by Xpa(ﬂ).

» This gixes a local I\/Ia_(kov property — the conditional distribution
P(X,.|X/.) = P(X.|Xpa()), so the state of X, is directly influenced only
by the state of its parents (note )?/M denotes the states of all nodes except
for node ). Then the full distribution for all the variables can be
expressed as:

P{Xu: e V}) = [T PXulXosiy)- (43)
pney



Directed graphical models: Divisive normalization and Bayes-Kalman

> We have already seen two examples of directed graphical models in this
chapter:

» First, when we studied divisive normalization used to represent the
dependencies between the stimuli, the filter responses, and the common
factor.

» Second, when exploring the Bayes-Kalman filter, where the hidden state x;
at time t “causes” the hidden state x;11 at time t and the observation y;.

» Note that in some situations, the directions of the edges indicate physical
causation between variables, but in others, the arrows merely represent
statistical dependence. The relationship between graphical models and
causality is complex and is clarified in (Pearl, 2000).



Causal structure: Taxonomy of cue interactions
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Figure 36 : Graphical models give a taxonomy of different ways in which visual cues
can be combined. Left: An example of common cause. The shadow and binocular
stereo cues are caused by the same event — two surfaces with one partially occluding
the other. Right: The image of the bicycle is caused by the pose of the bicycle, the
viewpoint of the camera, and the lighting conditions.



Graphical models and explaining away (1)

» Graphical models can be used (Pearl, 1988) to illustrate the phenomena of
explaining away. This describes how our interpretations of events can
change suddenly as new information becomes available.

» For example, suppose a house alarm A can be activated by either a
burglary B or by an earthquake E. This can be modeled by P(A|B, E) and
priors P(B), P(E) for a burglary and an earthquake. In general, the prior
probability of a burglary is much higher than the prior probability of an
earthquake. So if an alarm goes off, then it is much more probable to be
caused by a burglary, formally P(B|A) >> P(E|A). But suppose, after the
alarm has sounded, you are worried about your house and check the
Internet only to discover that there has been an earthquake. In this case,
this new information “explains away” the alarm, so you stop worrying
about a burglary.



Graphical models and explaining away (I1)

» Variants of this phenomena arise in vision. Suppose you see the “partly
occluded T" where a large part of the letter T is missing. In this case
there is no obvious reason that part of the T is missing, so the perception
may be only of two isolated segments. On the other hand, if there is a
grey smudge over the missing part of the T, then most observers perceive
the T directly. The presence of the smudge “explains away” why part of
the T is missing.

» The Kanizsa triangle can also be thought of in these terms. The
perception is of three circles partly occluded by the triangle. Hence the
triangle explains why the circles are not complete. We will give a closely
related explanation when we discuss model selection.



Directed graphical models and visual tasks (1)

» The human visual system performs a range of visual tasks, and the way
cues are combined can depend on the tasks being performed.

» For example, consider determining the shape of a shaded surface. In most
cases we need only shape from shading to estimate the shape of the
surface. But occasionally we may want to estimate the light source
direction.

> This can be formulated by a model P(/|S, L)P(S), P(L), where [ is the
observed image, S is the surface shape, and L is the light source direction.
P(1]S, L) is the probability of generating an image / from shape S with
lighting L, and P(S), P(L) are prior probabilities on the surface shape and
the lighting.



Directed graphical models and visual tasks (Il)

> If we only want to estimate the surface shape S, then we do not care
about the lighting L. The optimal Bayesian procedure is to integrate it out
to obtain a likelihood P(/|S) = [ dLP(l|S, L)P(L), which is combined
with a prior P(S) to estimate S.

» Conversely, if we only want to estimate the lighting, then we should
integrate out the surface shape to obtain a likelihood
P(I|L) = [ dSP(1|S,L)P(S) and combine it with a prior P(L).

> If we want to estimate both the surface shape and the lighting, then we
should estimate them using the full model P(/|S, L) with priors P(S) and
P(L).

> “Integrating out” nuisance, or generic, variables relates to the generic
viewpoint assumption (Freeman, 1994) which states that the estimation of
one variable, such as the surface shape, should be insensitive to small
changes in another variable (e.g., the lighting).



Model selection.

» Certain types of cue coupling require model selection.

» While some cues, such as binocular stereo and motion, are usually valid in
most places of the image, other cues are only valid for subparts of each
image. For example, the lighting and geometry in most images are too
complex to make shape from shading a reliable cue. Also shape from
texture is only valid in restricted situations.

> Similarly, the visual system can use perspective cues to exploit the regular
geometrical structure in the ball-in-a-box experiments. But such cues are
only present in restricted classes of scenes, which obey the “Manhattan
world” assumption. These cues will not work in the jungle. These
considerations show that cue combination often requires model selection in
order to determine in what parts of the image, if any, the cues are valid.



Model selection illustration

Figure 37 :  Model selection may need to be applied to decide if a cue can be used.
Shape from shading cues will work for case (a) because the shading pattern is simply
due to a smooth convex surface illuminated by a single source. But for case (b) the
shading pattern is complex — due to mutual reflection between the two surfaces — and
so shape from shading cues will be almost impossible to use. Similarly, shape from
texture is possible for case (c), because the surface contains a regular texture pattern,
but is much harder for case (d), because the texture is irregular.



Model selection examples

» Model selection also arises when there are several alternatives ways to
generate the image.

» By careful experimental design, it is possible to adjust the image so that
small changes shift the balance between one interpretation and another.

» Examples include the experiments with two rotating planes that can be
arranged to have two competing explanations (Kersten et al., 1992). With
slight variations to the transparency cues, the two surfaces can be seen to
move rigidly together or to move independently (see
http://youtu.be/gSrUBpovQdU).


http://youtu.be/gSrUBpovQdU

Model selection: shadows and specularity

> A classic experiment (Blake & Bulthoff, 1990) studies human percption
using a sphere with a Lambertian (diffuse) reflection function, which is
viewed binocularly.

» A specular component is adjusted so that it can lie in front of the sphere,
between the center and the sphere, or at the center of the sphere.

> If the specularity lies at the center, then it is perceived to be a transparent
light bulb.

> If the specularity is placed between the center and the sphere, then the
sphere is perceived to be shiny and specular.

> If the specularity lies in front of the sphere, then it is perceived as a cloud
floating in front of a matte (Lambertian sphere).

» This is interpreted as strong coupling using model selection (Yuille &
Bulthoff, 1996).



Model selection examples: lllustration
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Figure 38 : Examples of strong coupling with model selection. Left: A sphere is
viewed binocularly, and small changes in the position of the specularity lead to very
different percepts (Blake and Biilthoff, 1990). Right: Similarly altering, the
transparency of the moving surfaces can make the two surfaces appear to rotate either
rigidly together or independently.
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Model selection and explaining away

» Model selection can also give an alternative explanation for “explaining
away”

> For example, consider two alternative models for partially occluded T

> The first model is of two individual segments plus a smudge region. The
second is a T that is partially hidden by a smudge. The second model is
more plausible since it would be very unlikely, an accidental viewpoint (or
alignment), for the smudge to happen to cover the missing part of the T,
unless it really did occlude it.

> A similar argument can be applied to the Kanizsa triangle. One
interpretation is three circles partly occluded by a triangle. The other is
three partial circles arranged so that the missing parts of the circles are
aligned. The first interpretation is judged to be most probable.



Flying carpet revisited

» Like Kersten's ball-in-a-box experiments, the flying carpet illusion requires
estimating the depth and orientation of the ground plane (i.e., the beach),
segmenting and recognizing the woman and the towel she is standing on,
detecting the shadow, and then using the shadow cues, which requires
making some assumptions about the lighting, to estimate that the towel is
hovering above the ground.

» This is a very complex way to combine all the cues in this image. Observe
that it relies on the generic viewpoint assumption, in the sense that it is
unlikely for there to be a shadow of that shape in that particular part of
the image unless if was cast by some object. The real object that cast the
shadow (the flag) is outside the image, so the visual system “attaches”
the shadow to the towel, which then implies that the towel must be
hovering off the ground.



Examples of strong coupling

We now give two examples of strong coupling. The first example deals with
coupling different modalities, while the second example concerns the perception
of texture.



Multisensory cue coupling

» Human observers are sensitive to both visual and auditory cues.

> Sometimes these cues have a common cause, e.g., you see a barking dog.
But in other situations, the auditory and visual cues have different causes,
e.g., a nearby cat moves and a dog barks in the distance.

» Ventriloquists are able to make the audience think that a puppet is talking
by making it seem that visual cues (the movement of the puppet’s head)
and auditory cues (words spoken by the ventriloquist) are related. The
ventriloquism effect occurs when visual and auditory cues have different
causes — and so are in conflict — but the audience perceives them as
having the same cause.



Multisensory cue coupling: The model (1)

> We describe an ideal observer for determining whether two cues have a
common cause or not (Kording et al., 2007), which gives a good fit to
experimental findings.

» The model is formulated using a meta-variable C, where C = 1 means
that the cues xa, xv are coupled.

> More precisely, they are generated by the same process S by a distribution
P(XA,Xv|5) = P(XA|5)P(X\/‘S)
P(xa|S) and P(xv|S) are normal distributions N(xa|S,o3), N(xv|S,0%) —
with the same mean S and variances 03, o%.

> |t is assumed that the visual cues are more precise than the auditory cues,
so that 03 > o%. The true position S is drawn from a probability
distribution P(S), which is assumed to be a normal distribution N(0, o3).



Multisensory cue coupling: The model (Il)

» C = 2 means that the cues are generated by two different processes Sa
and Sg.

> In this case, the cues x4 and xv are generated respectively by P(xa|Sa)
and P(xv|Sv), which are both Gaussian N(Sa,03) and N(Sy,o%). We
assume that Sa and Sy are independent samples from the normal
distribution N(0, o3).

> Note that this model involves model selection, between C =1 and C = 2,
and so, in vision terminology, it is a form of strong coupling with model
selection (Yuille & Bulthoff, 1996).



Multisensory cue coupling: lllustration
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Figure 39 :  The subject is asked to estimate the position of the cues and to judge
whether the cues are from a common cause — i.e., at the same location — or not. In
Bayesian terms, the task of judging whether the cause is common can be formulated
as model selection: are the auditory and visual cues more likely generated by a single
cause (left) or by two independent causes (right)? Figure adapted from Kording et al.
(2007).




Multisensory cue coupling: Comparison with experiments (1)

» This model was compared to experiments in which brief auditory and
visual stimuli were presented simultaneously, with varying amounts of
spatial disparity.

> Subjects were asked to identify the spatial location of the cue and/or
whether they perceived a common cause (Wallace et al., 2004).

> The closer the visual stimulus was to the audio stimulus, the more likely
subjects would perceive a common cause.

> In this case subjects’ estimate of the stimuli's position was strongly biased
by the visual stimulus (because it is considered more precise with
oy > 03).

> But if subjects perceived distinct causes, then their estimate was pushed
away from the visual stimulus, and exhibited negative bias.



Multisensory cue coupling: Comparison with experiments (I1)

> Kording et al. (2007) argue that this negative bias is a selection bias
stemming from restricting to trials in which causes are perceived as being
distinct.

» For example, if the auditory stimulus is at the center and the visual
stimulus at 5 degrees to right of center, then sometimes the (very noisy)
auditory cue will be close to the visual cue and hence judged to have a
common cause, while in other cases, the auditory cause is farther away
(more than 5 degrees).

» Hence the auditory cue will have a truncated Gaussian (if judged to be
distinct) and will yield negative bias.



Multisensory cue coupling: Results and figure
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Figure 40 : Reports of causal inference. (a) The relative frequency of subjects
reporting one cause (black) is shown, with the prediction of the causal inference model
(red). (b) The bias, i.e., the influence of vision on the perceivedauditory position, is
shown (gray and black). The predictions of the model are shown in red. (c) A
schematic illustration explaining the finding of negative biases. Blue and black dots
represent the perceived visual and auditory stimuli, respectively. In the pink area,

people perceive a common cause. Reprinted with permission from Kording et al.
(2007)



Multisensory cue coupling: The mathematics (1)

More formally, the beliefs P(C|xa, xv) in these two hypotheses C = 1,2 are
obtained by summing out the estimated positions sa, sg of the two cues as
follows:

P(XA,X\/|C)P(C)

P(C|xa,xv) = P(xa, )
_ deP(XA|5)P(Xv‘S)P(5) : _
= Pxaxv) , if C=1,

_ [ ] d5adSvP(xalSA)P(xvISV)P(SAP(SV) o
P(XA7Xv) ’ '




Multisensory cue coupling: The mathematics (I1)

> There are two ways to combine the cues. The first is model selection.
This estimates the most probable model C* = arg max P(C|xv, xa) from
the input xa, xy and then uses this model to estimate the most likely
positions sa, sy of the cues from the posterior distribution:

P(xv,xalsv, sa, C*)P(sv, sa|C*)

P(sv,sa) ~ P(sv, salxv, xa, C*) = P(xv, xa| C*)

» The second way to combine the cues is by model averaging. This does not
commit itself to choosing C* but instead averages over both models:

P(sv,salxv,xa) = Y P(sv, salxv, xa, C)P(Clxv, xa)
c

_ Z P(X\/,XA|SV7 SA, C)P(S\/, SA|C)P(C|X\/,XA)
C P(Xv,XA‘C) ’

where P(C = 1|xv, xa) = ¢ (the posterior mixing proportion).



Multisensory cue coupling: Extension

> Natarajan et al. (2008) showed that a variant of the model could fit the
experiments even better.

» They replaced the Gaussian distributions with alternative distributions that
are less sensitive to rare events. Gaussian distributions are non-robust
because the tails of their distributions fall off rapidly, which gives very low
probability to rare events.

> More precisely Natarajan et al. (2008) assumed that the data is
distributed by a mixture of a Gaussian distribution, as above, and a
uniform distribution (yielding longer tails).

» More formally, they assume xa wN(xa : sa,03) + (1:—1”) and

xy wN(xy : sv,af/) + (1;77), where 7 is a mixing proportion, and

U(x) =1/n is a uniform distribution defined over the range r;.




Homogeneous and isotropic texture

> The second example is by Knill and concerns the estimating of orientation
in depth (slant) from texture cues (Knill, 2003).

» There are alternative models for generating the image, and the human
observer must infer which is most likely. In this example, the data could be
generated by isotropic homogeneous texture or by homogeneous texture
only.

» Knill's finding is that human vision is biased to interpret image texture as
isotropic, but if enough data are available, the system turns off the isotropy
assumption and interprets texture using the homogeneity assumption only.



Homogeneous and isotropic texture: lllustration

Isotropic source

Test stimuli

Texture maps

Figure 41 : Generating textures that violate isotropy. An isotropic source image is
either stretched (top middle) or compressed (bottom middle), producing texture maps
that get applied to slanted surfaces shown on the right. A person that assumes
surface textures are isotropic would overestimate the slant of the top stimulus and
underestimate the slant of the bottom one. Figure adapted from from Knill (2003).



Homogeneous and isotropic texture: Theory (1)

» The posterior probability distribution for S is given by:

pesin = PUEEL puis) =S anns)

where ¢; is prior probability of model i, and pi(/|S) is corresponding
likelihood function.

» More specifically, texture features T can be generated by either an
isotropic surface or a homogeneous surface. The surface is parameterized
by tilt and slant o, 7. Homogenous texture is described by two parameters
«, 0, and isotropic texture is a special case where a = 1. This gives two
likelihood models for generating the data:

Pu(T|(o,7),,0), Pi(T|(o,7),0)
Here, Pi(T|(0,7),0) = Pa(T|(o,7),x = 1,6).



Homogeneous and isotropic texture: Theory (II)

> Isotropic textures are a special case of homogenous textures.

» The homogeneous model has more free parameters and hence has more
flexibility to fit the data, which suggests that human observers should
always prefer it. But the Occam factor (MacKay, 2003) means that this
advantage will disappear if we put priors P(a)P(6) on the model
parameters and integrate them out. This gives:

Po(T|(0,7)) = //dadGPh(TKJ ), 0, 0),

P(T|(,7)) :/doph(n(m),e).

> Integrating over the model priors smooths out the models. The more
flexible model, Py, has only a fixed amount of probability to cover a large
range of data (e.g., all homogeneous textures) and hence has lower
probability for any specific data (e.g., isotropic textures).



Homogeneous and isotropic texture: The mathematics

> Knill describes how to combine these models using model averaging. The
combined likelihood function is obtained by taking a weighted average:

P(T|(e,7)) = pnPa(T|(o,7)) + piPi(T](, 7)), (44)

where (pa, pi) are prior probabilities that the texture is homogeneous or
isotropic. We use a prior P(c,7) on the surface and finally achieve a
posterior:

P(I|(o,7))P(o, 7)
P(1)

» This model has a rich interpretation. If the data are consistent with an
isotropic texture, then this model dominates the likelihood and strongly
influences the perception. Alternatively, if the data are consistent only
with homogeneous texture, then this model dominates. This gives a good
fit to human performance (Knill, 2003).

P(o,7|l) = (45)



Summary and the relations of early and high-level vision

> These lectures have given a rapid tour of early vision. We have provided a
modern perspective and conceptualization of early vision in terms of
probabilistic graphical models. In this final section, we briefly mention how
early vision relates to high-level vision.

> In particular, we will sketch the relations to three of the dominant
frameworks for vision:
1. Marr’s theory of vision (Marr, 1982)
2. Hierarchical theories of vision such as HMax (Riesenhuber & Poggio,
1999)
3. The “analysis by synthesis” framework (Mumford, 1992; Lee &
Mumford, 2003).

» The first two of these frameworks are “feedforward” in the sense that
visual processing proceeds bottom-up from low-level to mid-level and
ultimately to high-level. By contrast “analysis by synthesis” emphasizes
the role of top-down, or “feedback,” processing. Other researchers, e.g.,
Ullman (1995), Epshtein et al. (2008), have proposed theories that include
bottom-up and top-down processing.



Relationship to Marr's framework

> Marr's framework (Marr, 1982) for vision is feedforward. He proposed that
visual processing constructs a series of representations: (1) the primal
sketch; (2) the 2-1/2 D sketch; and (3) a 3D model. Roughly speaking,
the first two representations involve low-level and mid-level vision, while
the third corresponds to high-level vision.

> Many of the models described in this chapter would fit nicely as
components of Marr's framework. Edge detection and the weak membrane
model are both ways to construct the primal sketch. Modules, like
binocular stereo, could be used to construct the 2-1/2D sketch.

> There are, however, several differences. Marr's framework was not
formulated in probabilistic terms and does not address issues such as
strong coupling between visual cues. It pays little attention to top-down
processing and concentrates largely on the “computational level,” rather
than on neural implementations.



Relationship to theories of the ventral stream and HMax

> This class of theory (cf. Riesenhuber & Poggio, 1999) models the ventral
stream (visual areas V1, V2, IT) by a hierarchical neural network in which
as we ascend the hierarchy, the receptive fields of neurons are tuned to
increasingly complex visual structures but are increasingly less sensitive to
the precise positions of the input features.

» This theory focuses on object detection and recognition. It starts from the
models of simple and complex cells and extends this idea to build a
hierarchy of cells.

» This theory is strongly motivated by properties of the visual system. At
the higher levels it emphasizes the importance of learning. The theory is
predominantly feedforward.



Analysis by synthesis theories of vision

» By contrast with the first two frameworks, analysis by synthesis
emphasizes both feedforward and feedback visual processing. It relates to
the idea that visual is inverse computer graphics and that visual processing
should discover the causal factors of images. The framework for analysis
by synthesis is based on pattern theory (Grenander, 1976, 1978) which is
formulated probabilistically.

» Mumford (Mumford, 1992) argued for the importance of top-down
processing in vision, citing the large number of backprojections in the
cortex that are reminiscent of the “analysis by synthesis” approach. This
class of theories has been developed in (Lee & Mumford, 2003) and
related ideas appear in Ullman (1995), and Epshtein et al. (2008). The
theory of Rao and Ballard (1999), who suggest that top-down processing
can be used to implement predictive processing, somewhat similar to the
Bayes-Kalman models briefly discussed in these lectures.



Early and high-Level vision: Strong coupling

» The situation is more complicated for the third type of framework, which
combines bottom-up and top-down processing. But this can also be
formulated by extending the graphical model theories we have dicussed so
that they are hierarchical. In these models the low-level nodes represent
elementary features, such as edges, and the intermediate-level nodes
represent compositions of the lower-level features, such as the grouping of
edges to form longer segments, or the grouping of parallel line segments.
These intermediate-level structures are combined to form larger structures,
such as objects and object parts.

> These theories are sometimes called compositional (Geman et al., 2002;
Zhu et al., 2011) because they build objects by composition and they are
closely related to stochastic grammars (Zhu & Mumford, 2007; Mumford
& Desolneux, 2010). For these classes of theories, the early and high levels
of vision are strongly coupled (similar to strong coupling of cues).
Inference can be performed either bottom-up, where it is driven directly by
the input image, and low-level hypotheses are combined to make
hypotheses for more complex structures, or top-down, where high-level
hypotheses drive the computation.
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