
Chapter 2: Basic Neuron and Network Models.

Lecture 1

Statistical Models of Neuronal Activity

and Neural Coding



Neural coding

• External inputs are encoded by spike trains of neural populations that form the output of

sensory systems (e.g., ganglion cells in the retina);

• These spike trains influence internal state of the central nervous system;

• Motor outputs are conveyed to target muscles in the form of spike trains;

• How is information about external inputs, internal state, and motor outputs encoded in

spike trains of populations of neurons?



Neuronal variability

• Neuronal responses are variable from

trial to trial;

• Statistical descriptions of neuronal ac-

tivity are needed

• Characterize statistics of firing, condi-

tioned by parameters describing sen-

sory stimulus P (spike train | stimulus)

• This conditional probability distribution

can in principle reveal how much infor-

mation about the stimulus is contained

in spike trains

Stimulus presentation
6

6

-

Trial number

Time



Spike trains

• Spike train = list of spike times, {tik, i = 1, . . . , NT , k = 1, . . . , Ni}
– tik: time of k-th spike in trial number i

– NT : number of trials

– Ni: number of spikes emitted during trial i

• Spikes are often described mathematically by delta functions at times tik

• For practical purposes, spike trains are often discretized in bins of width ∆t

• For ∆t short enough, spike trains then described by a string of T binary numbers

Si(t), t = 1, . . . , T ,

– Si(t) = 1: spike emitted in bin t in trial i

– Si(t) = 0: no spike emitted in bin t in trial i.



Spike train variability

• Variability within a trial:

– Distribution of inter-spike intervals (ISI)

PISI(t)

– Mean ISI = 1/(firing rate)

– Standard deviation (SD) of ISI

– Coefficient of variation (CV) = SD/mean

• Variability across trials:

– Define width of temporal window ∆t

– Compute distribution of spike counts in

this window PSC(n)

– Compute mean and variance of spike

counts

– Fano factor (FF) = variance/mean

6

PISI(t)

?
PSC(n)



Spike train as point processes: The Poisson process

• Point process: stochastic process whose realizations consist of a set of isolated points in time

• Simplest point process: the Poisson process

• Homogeneous Poisson processes:

– Independence of successive ISIs

– Exponential distribution of ISIs, P (t) = ν exp(−νt)
– ν = spike rate/firing rate (in spikes per second)

– Mean ISI = 1/ν

– CV = 1

– FF = 1

– Distribution of spike counts in an interval of duration T :

P (n) =
(νT )n

n!
exp(−νT )

• Inhomogeneous Poisson process:

– Time-varying firing rate

– Probability of spike emission in a given interval depends only on firing rate in that interval



Poisson processes vs. spike trains of real neurons

• Similarities with spike trains recorded in vivo:

– Broad distributions of ISIs

– CVs often close to one (particularly in cortex, ...)

– Weak correlations between successive ISIs

• Differences with spike trains recorded in vivo:

– ISIs of real neurons cannot be shorter than absolute refractory period

– A large fraction of neurons have CVs significantly different from 1



Other point process models

• Poisson process with dead time

• Renewal process with gamma distributed ISIs

• Renewal process with inverse Gaussian distributed ISIs

• Spike trains generated as output of specific biophysical neuron models (e.g.,

integrate-and-fire) with noisy input



Averaging over trials: The poststimulus time histogram (PSTH)

• Averaging spike trains over trials →
PSTH

• Divide time in bins

• PSTH = (total number of spikes over

all trials in each bin)/(number of trials

times duration of bin)

• Gives an estimate of instantaneous fir-

ing rate vs. time

• Expected fluctuations decrease as

1/
√
NT where NT is the number of

trials



Rate coding

• In many cases, the firing rate depends

on which stimulus is shown

• Spike count over a temporal window

contains information about the stimulus

• This form of coding is sometimes re-

ferred to as rate coding
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How firing rates depend on external stimuli: Tuning curves

• Tuning curve: how firing rate depends on a (typically

continuous) parameter characterizing the stimulus

• Experimentally recorded tuning curves have been fitted

by various functions:

– Bell-shaped tuning curves:

∗ Gaussian (e.g., firing rate vs. orientation in neu-

rons in monkey MT (A), adapted from McAdams

and Maunsell 1995)

∗ Cosine (e.g., firing rate vs. arm movement direction

in monkey M1 (B), adapted from Amirikian et al.

2000)

– Monotonic tuning curves:

∗ Threshold-linear (e.g., firing rate vs. eye position in

goldfish oculomotor system, adapted from Aksay et

al. 2000)
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How are dynamic stimuli encoded by single neurons?

Time-dependent stimulus

⇒ Spike response to stimulus

in different trials

⇒ Instantaneous firing rate

(PSTH)



Linear-Nonlinear-Poisson (LNP) models

L N P
Stimulus Linear filter Static nonlinearity Poisson generator

s(t)

-

L(t)=

∫ t
K(t−t′)s(t′)dt′

-

r(t) = Φ[L(t)]

-

| | || |

'

&

$

%

'

&

$

%

'

&

$

%



Fitting an LNP model to data

• First obtain the linear filter K using

a spike-trigger average (STA) of the

stimulus

• Then, obtain the static nonlinearity by

computing the average rate r(t) for

each value of L
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Receptive fields (RFs)

• Visual stimuli depend on space and time

• Linear filter depends on space and time K(x, y, t) (spatiotemporal receptive field)

• Spatial receptive field: spatial area in which K(x, y, t) is significantly different from

zero

• Separable receptive fields:

K(x, y, t) = Ks(x, y)Kt(t)



Receptive field examples - retina and thalamus

• In retina and thalamus, circularly symmetric

RFs

• Modeled by difference of Gaussians, with ON

(or OFF) center region, and OFF (or ON) sur-

round region

Ks(x, y) = ±
(

1

2πσ2
c

exp

(
−x

2 + y2

2σ2
c

)
− B

2πσ2
s

exp

(
−x

2 + y2

2σ2
s

))
– B = balance between center and surround

– σc = width of center

– σs = width of surround



Receptive field examples - V1

• In V1, RFs are no longer circularly symmetric

• Modeled by Gabor function

gs(x, y) = exp

(
−
x′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)
x′ = x cos(θ) + y sin(θ)

y′ = −x sin(θ) + y cos(θ)

– λ = wavelength

– θ = orientation

– ψ = phase offset

– σ = width of Gaussian envelope

– γ = spatial aspect ratio

• Leads to orientation selectivity



Single neuron coding: Beyond firing rates

• Models described so far: instanta-

neous firing rate is the only information-

carrying quantity

• Alternate scenarios: spike correlations

(spike pattern code); phase of spikes

with respect to an oscillatory variable
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Static rate (spike count) code

• Information contained in the average

spike rate (spike count over a time win-

dow)



Time-varying rate code

• Information contained in the temporal

dynamics of the instantaneous firing

rate, but not in its mean



Correlation (spike pattern) code

• Information could be carried in higher

order statistics of spike trains

• An example is a ”spike pattern” code

- a stimulus is represented by a spe-

cific spike pattern (in the example on

the right, a burst of two spikes)



Phase of firing code

• Brain networks often exhibit oscillatory

activity

• Information can be contained in the

phase of firing with respect to the on-

going oscillation



Population coding

• To understand coding by populations of neurons, we need statistical descriptions of

population activity and how it depends on external stimuli

• Simplest model: independent neurons (no correlations)

• In some cases, independent model provides a poor description of population activity

• Models for correlated activity:

– Maximal entropy models with second-order interactions

– Dichotomized Gaussian models

– etc.



Population coding scenarios

• Information carried by average firing

rates of neurons (A)

• Information carried by temporal dynam-

ics of firing rate (B)

• Correlation code (C)

• Phase of firing code (D)

• Several encoding schemes could be

present simultaneously (multiplexing)
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Which coding strategies are used by the brain?

• In the vast majority of brain areas investigated so far, spike counts carry information

about external stimuli

• In many cases, temporal structure of instantaneous firing rate carries additional

significant information

• In a few cases, higher order correlations and/or phase of firing have been shown to

carry additional significant information

• How much information is carried by these different ”codes”?

Can be quantified using tools from information theory



Quantifying information

• Stimulus θ⇒ Neural response ~r, whose statistics is given by P (~r|θ)

• Shannon’s mutual information

I =

∫
dθρ(θ)

∫
d~rP (~r|θ) log2

(
P (~r|θ)
P (~r)

)
– Quantifies how much the uncertainty about the stimulus is reduced by the neural

response

• Fisher information

J(θ) =

∫
d~rP (~r|θ)

(
∂

∂θ
logP (~r|θ)

)2

– Provides a lower bound on the variance of the error of any estimator of the stimulus

– For N independent neurons, grows linearly with N (error decreases as 1/
√
N )



Chapter 2: Basic Neuron and Network Models.

Lecture 2

Rate Models



Firing rate models

• Describe population activity not in terms of individual neuron variables, but rather in

terms of average activity

• Useful to describe phenomena at the macroscopic or mesoscopic levels

• Population activity described by ordinary differential equations (ODEs)

• Known under various names: neural mass model, firing rate model, rate model,

Wilson-Cowan model, neural field model



Simplest rate model

• Population activity r(t) described by

τ
dr(t)

dt
= −r(t) + Φ (I(t) + Jr(t))

• τ : time constant of firing rate dynamics

• Φ(.): static transfer function (f-I curve)

• I(t): external input

• J : strength of synaptic connections within the population

– J > 0: excitatory network

– J < 0: inhibitory network

Amari 1972; Wilson and Cowan 1972



The transfer function Φ

Threshold linear Φ(x) = [x− T ]+ Sigmoidal Φ(x) = 1/(1 + exp(−β(x− T )))

f-I curve of a specific spiking neuron model f-I curve of a real neuron (Rauch et al. 2003)



Rate models for local populations of neurons

• n subpopulations described by their average firing

rate ri, i = 1, . . . , n

τi
dri
dt

= −ri + Φi

Ii +
∑
j

Jijrj


• Example: E-I network (Wilson and Cowan 1972):

τE
drE
dt

= −rE + ΦE (IEX + JEErE − JEIrI)

τI
drI
dt

= −rI + ΦI (IIX + JIErE − JIIrI)



Analysis of rate models

τ
dr

dt
= −r + Φ (I + Jr)

• Solve equations for fixed point(s):

r0 = Φ(I + Jr0)

• Check linear stability of fixed point(s):

– A small perturbation δr around the fixed point obeys the linearized dynamics

δ̇r =
(−1 + Φ′J)

τ
δr

– Compute eigenvalues λ of the Jacobian matrix (−1 + Φ′J)

– Fixed point stable if all eigenvalues have negative real parts

– ”Rate” instability (saddle node bifurcation) when λ = 0

– Oscillatory instability (Hopf bifurcation) when λ = ±iω and ω 6= 0



Simplest case: One population, linear transfer function

τ
dr

dt
= −r + (I + Jr)

• Unstable if J > 1 (rate instability)

• Perfect integrator if J = 1:

r(t) =
1

τ

∫ t

I(t′)dt′

• Stable if J < 1:
τ

(1− J)

dr

dt
=

I

(1− J)

– Excitatory network (0 < J < 1): amplification of inputs, slow response

– Inhibitory network (J < 0): attenuation of inputs, fast response



Excitatory network: bistability

• Excitatory rate model:

τ
dr

dt
= −r + Φ (I + Jr)

• Fixed points and their stability can be obtained by

plotting dr
dt as a function of r

• For suitable I and Φ, there exists a range of J for

which three solutions exist

• Low and high rate solutions are stable; intermediate

rate solution unstable (gives the boundary of basins

of attraction of both states)

• Bistable system keeps a memory of its initial condi-

tion



E-I network: oscillations

• Excitatory-inhibitory network:

τE
drE

dt
= −rE + ΦE (IEX + JEErE − JEIrI)

τI
drI

dt
= −rI + ΦI (IIX + JIErE − JIIrI)

• Canonical model for local cortical networks

• Dynamics of two-variable models can be ana-

lyzed using phase plane analysis (see chapter

3)

• Can produce oscillations, provided both

JEIJIE and JEE are sufficiently large
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Multiple inhibitory populations - winner-take-all

• Simplest case: two mutually inhibitory popula-

tions

τ
dr1
dt

= −r1 + Φ(IX − Jr2)

τ
dr2
dt

= −r2 + Φ(IX − Jr1)

• For strong enough external inputs, and J , can

become bistable

• In both stable states, one population has a high

rate, the other a low rate

• ”Winner-take-all” behavior

0 20 40 60 80 100
Time

0

0.2

0.4

0.6

0.8

1

R
a

te

0 0.2 0.4 0.6 0.8 1
rate of population 1

0

0.2

0.4

0.6

0.8

1

ra
te

 o
f 

p
o

p
u

la
ti
o

n
 2

A

B C

I I



Spatially extended rate model (”neural field” model)

• Spatially extended rate model:

τ ṙ(x, t) = −r(x, t) + Φ

(
I(x, t) +

∫
dyJ(|x− y|)r(y, t)

)
• x can refer to spatial location, or to preferred stimulus of a population of neurons

• r(x, t): firing rate of neurons at location x at time t

• I(x, t): external input

• J(|x− y|): weight of synaptic connections (”synaptic footprint”) between neurons at

locations x and y (or with preferred stimuli x and y)



The ring model

• 1-D space with ring topology (orienta-

tion space): x ∈ [−π, π]

• Threshold-linear transfer function,

Φ(I) = I if I > 0 and Φ(I) = 0

otherwise

• Synaptic footprint:

J(|x− y|) = J0 + J1 cos (x− y) -10 -5 0 5 10
J0
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• This model, or variants of it, have been proposed as models of V1 (orientation

selectivity), prefrontal cortex (spatial selectivity), head direction cells, place cells, grid

cells, etc.

Ben-Yishai et al. 1995; Hansel and Sompolinsky 1998



Analysis of the model
Thanks to the simplified transfer function and footprint, the dynamics can be written in terms of three order

parameters r0 (average activity), r1 (spatial modulation of the activity), and ψ (location of the peak

activity):

r0(t) =

∫
dx

2π
r(x, t)dx

r1(t) =

∫
dx

2π
r(x, t) cos(x− ψ(t))dx

0 =

∫
dx

2π
r(x, t) sin(x− ψ(t))dx

These parameters evolve in time according to

ṙ0(t) = −r0(t) +

∫
dx

2π
I(x)

ṙ1(t) = −r1(t) +

∫
dx

2π
cos(x− ψ(t))I(x)

ψ̇(t)r1(t) =

∫
dx

2π
sin(x− ψ(t))I(x)

I(x) =
[
Iext + J0r0(t) + J1 cos(x− ψ(t))r1(t)

]
+



Phase diagram of the model

• Stationary uniform state characterized by

r0(t) = R0, r1 = ψ = 0

• Stability analysis of stationary uniform state yields two

types of instabilities:

– Rate instability: J0 = 1

– Turing instability: J1 = 2, leading to a ”bump state”

• Bump states have been proposed to account for spatial

working memory in prefrontal cortex, and to account for

properties of head direction cells, place cells, and grid

cells
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Chapter 2: Basic Neuron and Network Models.

Lecture 3

Single Neuron Models



Neurons

• Traditionally viewed as the basic computational

units of the nervous system (”neuron doctrine”)

• Anatomically distinct cells with highly branched pro-

cesses emerging from soma (dendrites and axons)

• Dendrites = input, where vast majority of synaptic

contacts are made

• In mammalian CNS, each neuron has typically

thousands of synapses

• Axons = output, propagate action potentials to

postsynaptic neurons

• Neurons have been modeled at many different lev-

els of complexity, from binary neurons to models

described by thousands of ODEs

Soma

Axon

Dendrite



Hodgkin-Huxley (HH) model

• Describes the dynamics of the membrane potential, and variables describing

voltage-gated ionic currents

• Introduced by Hodgkin and Huxley in their pioneering 1952 papers

• Hodgkin and Huxley obtained the model from fitting electrophysiological recordings

from the squid giant axon

• HH formalism has been used to describe many more ionic currents than the two

originally described by Hodgkin and Huxley, in many different cell types



Hodgkin-Huxley model - current balance equation

• Dynamics of the membrane potential obeys current balance equation

C
dV

dt
= −IL(V )− INa(V )− IK(V )

in which four types of currents appear:

• The capacitive current C dV
dt due to electrical charges on the membrane

• The leak current IL(V ) = gL(V − VL) due to passive flow of ions through the

membrane

• The sodium current INa(V ) = gNa(V )(V − VNa) due to voltage-dependent

opening of sodium channels inserted in the membrane

• The potassium current IK(V ) = gK(V )(V − VK) due to voltage-dependent

opening of potassium channels inserted in the membrane



Hodgkin-Huxley formalism - voltage-gated currents

• Fast sodium current

INa(V ) = ḡNam
3h(V − VNa)

τm(V )
dm

dt
= −m+m∞(V )

τh(V )
dh

dt
= −h+ h∞(V )

Provides positive feedback on the voltage:

– When V increases,m increases (Na channels open)

– When Na channels open, Na ions enter the cell, leading to further

increase in V

– h decreases more slowly, eventually closing the channels

• Delayed-rectifier potassium current

IK(V ) = ḡKn
4(V − VK)

τn(V )
dn

dt
= −n− n∞(V )

Provides negative feedback on the voltage:

– When V increases, n increases (K channels open)

– When K channels open, K ions exit the cell, leading to a decrease

in V



Putting everything together - the action potential in the HH model



Hodgkin-Huxley model - outlook

• Hodgkin-Huxley model has been highly influential

– Allowed to understand mechanisms of action potential generation and propagation

– Formalism used to describe quantitatively many other ionic currents

• Its complexity makes it difficult to analyze mathematically, as well as computationally

expensive

• What about simpler models?



From HH to two variable models

• Variable m is much faster than all other variables:

⇒ m(t) = m∞(V )

• Dynamics of n and 1− h are similar:

⇒ h = 1− n

• Gives a 2-D model:

C
dV

dt
= −gL(V − VL)− ḡNa(V − VNa)m3

∞(V )(1− n)− ḡKn4(V − VK)

τn(V )
dn

dt
= −n+ n∞(V )

• Closely related models: Morris-Lecar; FitzHugh-Nagumo

• Can be analyzed using phase plane analysis (see chapter 3)



Leaky integrate-and-fire model

• Subthreshold dynamics (V < VT ) keep only

capacitive and leak currents (Lapicque 1907):

C
dV

dt
= −gL(V − VL) + Isyn(t)

τm
dV

dt
= −V + Ĩsyn(t)

• Spike emitted when V = Vt

• Then voltage reset to V = Vr

• (Optional) absolute refractory period of duration

τrp

• Vt, Vr , and τrp replace Na and K currents in

HH model

• Response to constant inputs

• Response to stochastic inputs
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LIF: Pros and cons

• Pros

– Computationally cheap - it is easy to simulate networks of tens of thousands of LIFs

on a workstation)

– Analytically tractable, in the presence of constant as well as stochastic inputs

– Simple variants of LIF able to reproduce real neuron static transfer functions

• Cons

– Cannot reproduce many features observed in real neurons (subthreshold

resonance, bursting, firing rate adaptation, etc.)

• Simple extensions of the LIF model: try to get the best of both worlds (simplicity, ability

to capture diversity of behaviors of real neurons)



Nonlinear integrate-and-fire models

• Spike generation dynamics captured by a nonlinear function of voltage

τm
dV

dt
= −(V − VL) + ψ(V ) + Isyn(t)

• When ψ is supralinear, voltage diverges to infinity in finite time whenever the synaptic

inputs exceed some threshold

• Time of divergence defines spike time in such models

• Popular choices of ψ:

– Quadratic integrate-and-fire (QIF)

ψ(V ) =
1

2∆T
(V − VT )2 + (V − VL)− IT

– Exponential integrate-and-fire (EIF)

ψ(V ) = ∆T exp

(
V − VT

∆T

)



Nonlinear integrate-and-fire models (cont.)

• EIF describes best spike initiation in HH

models

• EIF describes best I-V curves of cortical

pyramidal cells and interneurons

Fourcaud-Trocmé et al. 2003; Badel et al. 2008



Adaptive integrate-and-fire models

• Add a second variable coupled to the voltage

• Second variable can be driven by voltage itself, by spikes, or by both

• Models in this family:

– LIF + voltage-driven variable = generalized LIF, resonate-and-fire

– LIF + spike-driven variable = adaptive LIF

– QIF + (v&s) driven variable = Izhikevich model

– EIF + (v&s) variable = refractory EIF (rEIF), adex, adaptive EIF

Richardson et al. 2003; Izhikevich 2003; Brette and Gerstner 2005; Badel et al. 2008



Firing patterns in adaptive integrate-and-fire models

• Adaptive NLIF models can gener-

ate a wide diversity of firing pat-

terns:

– Subthreshold resonance

– Response with a single spike to

constant current injection

– Firing rate adaptation

– Bursting

– Rebound firing

– etc.



Binary neurons

• Neurons described by binary variables Si(t) = 0, 1 depend on inputs hi(t) (”local

fields”):

hi(t) = IiX +
∑
j 6=i

JijSj(t)

• Update rules: specify how Sis are computed from his

– Synchronous updates: define a time step dt and a threshold T

∗ Deterministic case:

Si(t+ dt) = Θ(hi(t)− T ) =

 1 hi(t) ≥ T
0 hi(t) < T

∗ Stochastic case:

Si(t+ dt) =

 1 with probability φ(hi(t))

0 with probability 1− φ(hi(t))



– Asynchronous updates: can happen at any time, with transition rates

w(Si(t) = 0→ Si(t) = 1) =
φ(hi(t))

τ

w(Si(t) = 1→ Si(t) = 0) =
1− φ(hi(t))

τ

– φ sigmoidal function (monotonically increasing from 0 to 1)

φ(x) =
1

1 + exp(−β(x− T ))

where β is analogous to an inverse temperature



Summary - which model neuron to choose?

• To understand biophysical mechanisms: Hodgkin-Huxley type models

• In some conditions, HH type models can be reduced to/approximated by much simpler

models

• These simpler models are more amenable to mathematical analysis and

computationally cheaper

• LIF-type neurons can reproduce surprisingly well the f-I curve of real neurons, or even

the full spike trains of neurons, when simulated by random fluctuating currents

• Binary neurons have been fundamental to understanding the dynamics of various types

of networks, such as associative memory models
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Overview of a synapse

• Action potentials traveling along the ax-

ons reach axon terminals (presynaptic

boutons)

• Resulting depolarization leads to cal-

cium influx through Ca channels

• Calcium influx causes vesicles to fuse

onto the membrane and release neuro-

transmitters

• Neurotransmitters diffuse in the synap-

tic cleft and bind with receptor channels

located on the membrane of postsynap-

tic neuron

• Receptor channels open, causing ion

influx into the postsynaptic cell

Dendritic spine

6 Post-synaptic receptors
B
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Synaptic cleft
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Models of single synapses

• Networks of binary neurons: synapses are described by a single number, the synaptic

efficacy

• Networks of spiking neurons: models of synapses are characterized by

– Time course

– Voltage dependence

– History dependence

– Degree and nature of stochasticity



Time course

• Synaptic currents elicited by spikes of neuron j

at times tkj can be written as

Ij(t) ∝
∑
k

S(t− tkj )

• S(t): time course of an individual postsynaptic

current (PSC) triggered by a spike at time t = 0

• Popular choices of S(t) in network studies:

– Delayed delta function

S(t) ∝ δ(t−D)

– Instantaneous jump, exponential decay

S(t) ∝ exp(−t/τs)Θ(t)

– Difference of exponentials (DOE)

S(t) ∝ [exp(−t/τs)−exp(−t/τr)]Θ(t)

– Delayed DOE

S(t) ∝ (exp(−(t−D)/τs)−exp(−(t−D)/τr))Θ(t−D)
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Voltage dependence

• Current-based models:

Iij(t) = J
∑
k

S(t− tkj )

• Conductance-based models:

Iij(t) = g(V (t)− Vsyn)
∑
k

S(t− tkj )

where

– g = synaptic conductance

– Vsyn = synaptic reversal potential

Typical values of reversal potential

– Excitatory synapses: Vsyn ∼ 0 mV

– Inhibitory synapses: Vsyn ∼ −70 mV

• Voltage dependence of NMDA-mediated currents:

gNMDA(V ) ∼ 1

1 + exp(−0.062V )[Mg2+]/3.57



History dependence

• Synaptic strength is a function of the history of pre- and postsynaptic activity on many

different time scales

• Short-term synaptic plasticity describes dynamics on ms-s time scales

– Short-term depression

– Short-term facilitation

• Long-term synaptic plasticity describes dynamics on longer time scales (see chapter 6)



Tsodyks-Markram model for short-term depression

In between spikes

Spike

• Model describes two pools of vesicles, those that are

available for release (A), and the refractory ones (R)

• Fraction of available vesicles x obey

dx

dt
=

1 − x

τD
− ux

∑
k

δ(t− tk)

• u = fraction of used vesicles by a presynaptic AP

• τD = recovery time constant

• Postsynaptic current proportional to ux

Tsodyks and Markram 1998
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Stochastic nature of synaptic currents

⇒ Quantal model (Katz and collaborators, 1950s):

• N releasable vesicles (release sites)

• p: probability of release of a vesicle (quantum)

• q: postsynaptic response induced by a single released vesicle

• Distribution of responses given by binomial distribution

P (I = qn) = Cn
Np

n(1− p)N−n
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Networks

• Set of N neurons

• Connected through (directed) synap-

tic connectivity matrix Jij (efficacy of

synapse from neuron j to neuron i)

• Some or all neurons may receive exter-

nal inputs
  



Feedforward networks

• Feedforward networks

– contain no feedback loops

– Often arranged as a series of layers,

with connections from one layer to

the next

– model networks in sensory systems

(early visual system), cerebellar cor-

tex, etc.
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Recurrent networks

• Networks with feedback loops

• All neurons potentially connected to all

other neurons

• Used to model networks in neocor-

tex and hippocampus in which neurons

connect extensively to nearby neurons
  



Networks of binary neurons

• N neurons

• Neurons described by binary variables Si(t) = 0, 1

• Depend on inputs hi(t) (”local fields”):

hi(t) = IiX +
∑
j 6=i

JijSj(t)

• Update rules: specify how Sis are computed from his

– Synchronous updates: define a time step dt, and a threshold T

∗ Deterministic case:

Si(t+ dt) = Θ(hi(t)− T ) =

 1 hi(t) ≥ T
0 hi(t) < T



∗ Stochastic case:

Si(t+ dt) =

 1 with probability φ(hi(t))

0 with probability 1− φ(hi(t))

– Asynchronous updates: with transition rates

w(Si(t) = 0→ Si(t) = 1) =
φ(hi(t))

τ

w(Si(t) = 1→ Si(t) = 0) =
1− φ(hi(t))

τ

– φ sigmoidal function (monotonically increasing from 0 to 1)

φ(x) =
1

1 + exp(−β(x− T ))

where β is analogous to an inverse temperature



Networks of binary neurons - the symmetric case

• Symmetric network Jij = Jji for all i 6= j, with no self-coupling (autapses) Jii = 0

for all i

• One can define an energy function (or Lyapunov function)

E(S1, . . . , SN ) = −1

2

∑
j 6=i

JijSiSj −
∑
i

(IiX − T )Si

• At zero temperature (β →∞), starting from any initial condition, E decreases

monotonically toward a local minimum

• The equilibrium probability of any state (S1, . . . , SN ) is given by the Boltzmann (or

Gibbs) distribution

P (S1, . . . , SN ) =
1

Z
exp (−βE(S1, . . . , SN )) ,

where Z =
∑

S1,...,SN
exp (−βE(S1, . . . , SN )) is the partition function



The Hopfield (1982) model

• N binary neurons (Si(t) = ±1)

• Update rule:

Si(t+ 1) = sign

(∑
j

JijSj(t)

)
• p random patterns ξµi are ”memorized” thanks to synaptic matrix

Jij =
1

N

∑
µ

ξµi ξ
µ
j

• Energy function:

E = −1

2

N∑
i,j=1

JijSiSj

• ”Retrieval states” close to stored patterns if p < pmax ∼ 0.14N

• pmax can be computed using methods from statistical physics (Amit, Gutfreund, and

Sompolinsky 1985)



Models with sparse memories

• Generalization to storage of patterns of arbitrary ”coding

levels”: Tsodyks and Feigel’man (1988)

• N binary neurons (Si(t) = 0, 1)

• Neuron dynamics:

Si(t+ 1) = Θ

(∑
j

JijSj(t) − T

)
• p ”memory states” ξµi = 1 with probability f (coding

level), 0 with probability 1 − f

• Synaptic matrix = covariance rule

Jij =
1

f(1 − f)N

∑
µ

(ξµi − f)(ξµj − f)

• Selective neurons exhibit persistent activity following presentation of one of the stored patterns

• See Fusi and Wang (chapter 11) for a description of more realistic models



Balanced networks

• NE E neurons, NI I neurons

• Random sparse connectivity matrix: each neuron receives on average

– K external E inputs

– K � NE E recurrent inputs

– K � NI I inputs

• Strong coupling: coupling strengths Jab ∼ 1/
√
K



Irregular firing in balanced networks

• Total excitatory inputs and total in-

hibitory inputs diverge as
√
K in the

large K limit

• Total inputs stay finite in this limit due

to a cancellation of leading order term

(balance between excitation and inhibi-

tion)

• Fluctuations in inputs remain finite in

large K limit

• Neurons fire highly irregularly as a result of large fluctuations in inputs

• Accounts for irregularity of firing of neurons in cortex

• Also leads to broad distributions of firing rates

van Vreeswijk and Sompolinsky 1996, 1998



Networks of spiking neurons - asynchronous and synchronous states

Networks of spiking neurons can settle in asynchronous or synchronous states, depending

on parameters
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