
Lecture 2.1 Exercises: Statistical models of neuronal activity and neural coding 

 

1.1 Poisson neuron with dead time 

A simplified way to incorporate a refractory period is to use a Poisson process with a dead time. 

In such a process, the interspike interval T is simply the sum of an exponentially distributed 

random variable t (P(t) = λ exp(−λt)), and a fixed refractory period τarp. 

1. Write down the probability density function of inter-spike intervals P(T) for such a 

process. 

 

2. Compute the mean interspike interval, and the firing rate r, as a function of λ and τarp. 

Sketch r as a function of λ. 

 

3. Compute the variance of the ISIs, and the CV. Sketch the CV as a function of λ. What is 

the effect of the refractory period on the CV? What is the range of allowed values of the 

CV in this model? 

 

 

1.2 Bursty neuron 

We consider a simple point process model for a bursty neuron. At each spike, the next 

interspike interval is drawn randomly in the following way: with probability p, the next 

interspike interval is equal to the refractory period τarp; with probability 1 − p, it is drawn from 

the Poisson model with dead time of the previous exercise (sum of an exponentially distributed 

random variable t, P(t) = λ exp(−λt), and a refractory period τarp). 

1. Write down the probability density function of inter-spike intervals P(T) for such a 

process. 

 

2. Compute the mean interspike interval, and the firing rate r, as a function of λ, τarp and p. 

Sketch r as a function of λ for different values of p. 

 

 

3. Compute the variance of the ISIs, and the CV. Sketch the CV as a function of λ for 

different values of p. What is the effect of p on the CV? Can the CV become larger than 1 

in this model? Plot a few (CV=constant) lines in the p − λτarp plane (e.g. CV=0, 0.5, 1, 2). 

Is there a limit in which the CV diverges? 



 

1.3 Information transmitted by a Poisson neuron in the short and long time limits 

We consider a single Poisson neuron that responds with a firing rate r(s) to a stimulus s ∈ [0, 1]. 

The stimulus is randomly drawn from a distribution ρ(s). The mean firing rate, averaged over all 

possible stimuli, is denoted as : 

 

The maximal firing rate is rmax . 

 

1. What is the probability p(k|s) that the neuron emits k spikes in an interval [0, t] when 

stimulus s is presented? 

 

 

2. A standard measure to quantify the information carried by a neuron about an external 

stimulus is Shannon’s mutual information, in bits. Shannon’s mutual information 

quantifies how much the uncertainty about the stimulus is reduced by observing 

neuronal activity. One bit of information corresponds to a reduction of uncertainty by a 

factor two (for instance, if there are only two possible stimuli, A and B, and a neuron 

always fire in response to A but never in response to B, then the neuronal response 

carries one bit of information about the stimulus). Here, we consider the information i 

I(k|s)carried by the number of spikes in an interval [0, t] about the stimulus s. I(k|s) is 

given by 

 

Write down I(k|s) as a function of r(s), ρ(s), and t. 

 

3. Short time limit 

a. If t is small (t ≪ 1/rmax), we can make the approximation that the number of 

spikes in the time window [0, t] is either 0 or 1. What are the probabilities that 

the neuron emits 0 and 1 spikes when stimulus s is presented, up to first order in 

t? 

 

b. Compute the mutual information I(k|s) in the limit t → 0 up to first order in t. 

How does it depend on t? Check that when the firing rate is independent of s, 

r(s) = , the mutual information vanishes. 



 

c.  We consider a neuron that responds to the stimulus with a binary tuning curve: 

r(s) = rmax if s > u, r(s) = 0 otherwise. The stimulus is uniformly distributed, ρ(s) = 1 

for all s.  

i. Compute  as a function of r max and u. 

ii. Compute the mutual information between k and s for this neuron, as a 

function of t (in the small time limit), rmax and u. 

iii. Plot how the mutual information depends on u in the range u ∈[0, 1]. 

What is the value of the threshold u that optimizes the mutual 

information in the short time limit? What is the value of the mutual 

information at this optimum? What is the optimal information per spike? 

 

d. We now consider a neuron that responds with a linear tuning curve, r(s) = rmaxs 

for s ∈ [0, 1]. The stimulus is again uniformly distributed, ρ(s) = 1 for all s. 

i. Compute the mutual information in that case. 

ii. Compare the two types of tuning curves. What is the best strategy in the 

short time limit, binary or linear? 

 

 

4. Long time limit. 

a. We consider again the case r(s) = rmax if s > u, r(s) = 0 otherwise, and uniformly 

distributed stimulus, but arbitrary t. 

i. Compute P(k), the probability that k spikes are observed, averaged over 

stimuli (distinguish the two cases k = 0 and k > 0). 

ii. Compute the mutual information I(k|s) in terms of t, rmax and 

 

(be careful again to separate the terms corresponding to k=0 and k>0) 

iii. Check that as t → 0 you recover the information computed in the short t 

limit. 

iv. Compute the information in the large t limit. Plot again how the mutual 

information depends on u in the range u ∈ [0, 1]. What is the value of the 

threshold u that optimizes the mutual information in this limit? What is 

the value of the mutual information at this optimum? Explain why this 

result was to be expected. 

 

b. We move again to the linear tuning curve scenario. Without doing any 

calculation, explain what is the limit of the mutual information in the large t 

limit. 



i. Compare again the two types of tuning curves. What is now the best 

strategy in the long time limit? 


