
Lecture 2.4 Exercises: Synapse models 

 

4.1 Conductance-based synapses and shunting inhibition 

We consider a neuron well below threshold for action potential initiation. The neuron is 

described by its membrane potential, V(t), that obeys the equation 

 
 (1) 

in which Cm is the membrane capacitance, gL the leak conductance, VL the resting membrane 

potential, gE(t) the time-dependent excitatory synaptic conductance, VE the excitatory reversal 

potential, gI(t) is the time-dependent inhibitory synaptic conductance, and VI is the inhibitory 

reversal potential For the sake of simplicity we set VL = 0mV, and VI = VL. We consider here the 

situation in which the voltage is V = 0 at t = 0, and investigate the effects of various 

combinations of excitatory and inhibitory conductances on the voltage response. 

1. Rewrite Eq. (1) in terms of the membrane time constant τm = Cm /gL, rescaled 

conductances , ,, and VE. 

 

 

2. Show that Eq. (1) can be rewritten as  

 
 (2) 

where τeff(t) and Veff(t) are a function of τm,  , , and VE. 

 

3. Excitatory input alone: we consider a situation in which there is no inhibition. The 

(rescaled) excitatory conductance opens abruptly at t = 0, and closes abruptly at t = τE, 

 
 (3) 

a. Compute the response of the voltage (EPSP, excitatory post-synaptic potential) in 

both intervals t ∈ [0, τE] and t > τE. Sketch qualitatively the shape of the EPSP. 

 

b. What is the amplitude of the peak of the EPSP? Discuss qualitatively how it depends 

on g E, VE and the ratio of time constants τE /τm. 

 

 



c. What is the decay time constant of the EPSP? 

 

 

4. Inhibitory input alone: we consider the reverse situation in which there is no excitation, 

and the (rescaled) inhibitory conductance opens abruptly at t = 0, and closes abruptly at 

t = τI, 

 
 (4) 

Compute the response of the voltage (IPSP, excitatory post-synaptic potential). How 

does it look like? 

 

5. Excitation and inhibition together: we now consider the situation in which there is a 

tonic inhibitory conductance, gI(t) = gI. The excitatory conductance again opens abruptly 

at t = 0, and closes abruptly at t = τE, 

 
 (5) 

a.  Repeat the three steps of question (3). At each step, compare what happens with 

and without inhibition. 

 

b. Do excitatory and inhibitory inputs sum linearly? 

 

 

4.2 Short-term synaptic depression 

We have seen in the course that some synapses undergo activity-dependent reduction of their 

transmission capabilities, called short-term synaptic depression (STD). STD is well described by 

the Tsodyks-Markram (TM) model. Here, we consider a simplified version of the TM model, in 

which we no longer consider the response of the synapse to individual presynaptic spikes, but 

rather to the presynaptic firing rate In this model, the fraction of available vesicles x(t) obeys 

the equation 

 
 (6) 

where 0 < U < 1 is the release probability, τD ∼ 100ms is the recovery time constant, and ν(t) is 

the firing rate of the pre-synaptic cell. The post-synaptic current, I(t), is given by 



  (7) 
where A is a constant. 

1. Write down a solution to Eq. (6) for an arbitrary ν(t). 

 

 

2. Suppose the pre-synaptic cell has been firing at a steady rate ν(t) = ν0 long enough for x 

to reach a steady state value x0. Write down x0 as a function of ν0. 

 

 

3. We consider now a step increase in presynaptic firing rate. At t = 0, ν(t) = ν0 and x(t) = x0, 

and the pre-synaptic firing rate instantaneously changes to ν1 = ν0 + ∆ν (∆ν > 0) and then 

stays constant. 

a. Compute and sketch the post-synaptic current I(t) as a function of time. 

 

b. Sketch how the step increase in current at t = 0, ∆I = I(0+ ) − I(0−), depends on ν0. 

 

 

c. Show that in the limit of large ν0, ∆I is proportional to ∆ν/ν0. 

 

d. Show that in this limit, the steady-state current becomes independent of the pre-

synaptic firing rate. 

 

 

e. What is the time scale over which the current reaches its new steady value? 


