Chapter 2: Basic Neuron and Network Models.
Lecture 1
Statistical Models of Neuronal Activity

and Neural Coding



Neural coding

e External inputs are encoded by spike trains of neural populations that form the output of

sensory systems (e.g., ganglion cells in the retina);
e These spike trains influence internal state of the central nervous system;
e Motor outputs are conveyed to target muscles in the form of spike trains;

e How is information about external inputs, internal state, and motor outputs encoded in

spike trains of populations of neurons?



Neuronal variability

o Neuronal responses are variable from

trial to trial;

e Statistical descriptions of neuronal ac-

tivity are needed

e Characterize statistics of firing, condi-
tioned by parameters describing sen-

sory stimulus P(spike train \ stimulus)

e This conditional probability distribution
can in principle reveal how much infor-
mation about the stimulus is contained

in spike trains
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Spike trains

e Spike train = list of spike times, {t;x,¢ =1,..., Np,k=1,..., N;}
— t;5: time of k-th spike in trial number 2
— N7 : number of trials
— IN;: number of spikes emitted during trial ¢

e Spikes are often described mathematically by delta functions at times ;.

e For practical purposes, spike trains are often discretized in bins of width At

e For At short enough, spike trains then described by a string of 1" binary numbers
Si(t),t=1,...,T,

— S;(t) = 1: spike emitted in bin £ in trial ¢

— S;(t) = 0: no spike emitted in bin ¢ in trial 7.



Spike train variability

e Variability within a trial:

— Distribution of inter-spike intervals (ISl)
Prsi(t)

— Mean ISI = 1/(firing rate) Prsi(t)
— Standard deviation (SD) of ISl g . DA _. - it
— Coefficient of variation (CV) = SD/mean .. .. A ' . R :-.,':: : '.-'.=;.=-.,.':'_' ;
e Variability across trials: S " ' '_ 2
— Define width of temporal window At tal b I . . - “- ' .:.- :.
— Compute distribution of spike counts in l
this window Psc (1) Psc(n)

— Compute mean and variance of spike

counts

— Fano factor (FF) = variance/mean



Spike train as point processes: The Poisson process

® Point process: stochastic process whose realizations consist of a set of isolated points in time
e Simplest point process: the Poisson process

e Homogeneous Poisson processes:
— Independence of successive ISls
— Exponential distribution of ISIs, P(t) = v exp(—vt)
— v = spike rate/firing rate (in spikes per second)
— MeanISI=1/v
-Ccv=1
- FF=1
— Distribution of spike counts in an interval of duration 7°:

(vT)"

Pln) = n!

exp(—vT)

e Inhomogeneous Poisson process:
— Time-varying firing rate

— Probability of spike emission in a given interval depends only on firing rate in that interval



Poisson processes vs. spike trains of real neurons

e Similarities with spike trains recorded in vivo:
— Broad distributions of ISIs
— CVs often close to one (particularly in cortex, ...)

— Weak correlations between successive ISls

e Differences with spike trains recorded in vivo:
— |SIs of real neurons cannot be shorter than absolute refractory period

— A large fraction of neurons have CVs significantly different from 1



Other point process models

e Poisson process with dead time
e Renewal process with gamma distributed ISls
e Renewal process with inverse Gaussian distributed ISIs

e Spike trains generated as output of specific biophysical neuron models (e.g.,

integrate-and-fire) with noisy input



Averaging over trials: The poststimulus time histogram (PSTH)

e Averaging spike trains over trials —
PSTH

Divide time in bins
PSTH = (total number of spikes over

all trials in each bin)/(number of trials

times duration of bin)

Gives an estimate of instantaneous fir-

ing rate vs. time

Expected fluctuations decrease as
1/v/ N1 where Nt is the number of

trials
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Rate coding
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How firing rates depend on external stimuli: Tuning curves

e Tuning curve: how firing rate depends on a (typically

continuous) parameter characterizing the stimulus

e Experimentally recorded tuning curves have been fitted

by various functions:

— Bell-shaped tuning curves:
* Gaussian (e.g., firing rate vs. orientation in neu-
rons in monkey MT (A), adapted from McAdams
and Maunsell 1995)
* Cosine (e.g., firing rate vs. arm movement direction
in monkey M1 (B), adapted from Amirikian et al.
2000)

— Monotonic tuning curves:
* Threshold-linear (e.g., firing rate vs. eye position in
goldfish oculomotor system, adapted from Aksay et
al. 2000)
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How are dynamic stimuli encoded by single neurons?

Time-dependent stimulus

— Spike response to stimulus

in different trials

= Instantaneous
(PSTH)
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Linear-Nonlinear-Poisson (LNP) models

L N

Stimulus Linear filter Static nonlinearity
S(t) L(t):ftK(t—t’)s(t/)dt/ T(t) = (I)[L(t)]

P

Poisson generator




Fitting an LNP model to data

e First obtain the linear filter K using
a spike-trigger average (STA) of the

stimulus

e Then, obtain the static nonlinearity by
computing the average rate r(t) for

each value of L
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Receptive fields (RFs)

e Visual stimuli depend on space and time
e Linear filter depends on space and time K(:I:, Y, t) (spatiotemporal receptive field)

e Spatial receptive field: spatial area in which K(x, Y, t) is significantly different from

zZero

e Separable receptive fields:

K(xava — Ks(xvy)Kt(t)



Receptive field examples - retina and thalamus

e In retina and thalamus, circularly symmetric
RFs

e Modeled by difference of Gaussians, with ON
(or OFF) center region, and OFF (or ON) sur-
round region

1 x‘z + y2 >
Ks (xvy) — + (27’(’0’2 exp <_ 20_2

B o z? + 1
—_— X —_—
2T o2 P 202

— B = balance between center and surround

— 0. = width of center

— 05 = width of surround



Receptive field examples - V1

e In V1, RFs are no longer circularly symmetric

e Modeled by Gabor function

/12 2,12 /
gs(x’y):exp (_ZU + 77y )COS (277% +

202

x’ = xcos(0) + ysin(h)

/

y = —xsin(6) + y cos(0)

— A = wavelength

— 6 = orientation

— 1) = phase offset

— o = width of Gaussian envelope
— 7y = spatial aspect ratio

e Leads to orientation selectivity




Single neuron coding: Beyond firing rates

e Models described so far: instanta-
neous firing rate is the only information-

carrying quantity

e Alternate scenarios: spike correlations
(spike pattern code); phase of spikes

with respect to an oscillatory variable
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Static rate (spike count) code

e Information contained in the average
spike rate (spike count over a time win-

dow)
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Time-varying rate code

e Information contained in the temporal
dynamics of the instantaneous firing

rate, but not in its mean
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Correlation (spike pattern) code

e Information could be carried in higher N IFES DU N
| (N | gt nr 11
order statistics of spike trains c—‘g : “"I “',I o :'”:I | I:,' ! 'I. Ll
e i |
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. . I ] | 11 1 | [ |
- a stimulus is represented by a spe-
T
cific spike pattern (in the example on 5
al

the right, a burst of two spikes) e e e e




Phase of firing code

e Brain networks often exhibit oscillatory

activity

e [nformation can be contained in the

phase of firing with respect to the on-

going oscillation
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Population coding

e To understand coding by populations of neurons, we need statistical descriptions of

population activity and how it depends on external stimuli
e Simplest model: independent neurons (no correlations)

® |n some cases, independent model provides a poor description of population activity

e Models for correlated activity:
— Maximal entropy models with second-order interactions
— Dichotomized Gaussian models

— efc.



Population coding scenarios

e Information carried by average firing
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Which coding strategies are used by the brain?

e |n the vast majority of brain areas investigated so far, spike counts carry information

about external stimuli

e In many cases, temporal structure of instantaneous firing rate carries additional

significant information

e In a few cases, higher order correlations and/or phase of firing have been shown to

carry additional significant information

e How much information is carried by these different "codes”?

Can be quantified using tools from information theory



Quantifying information

e Stimulus € = Neural response 7, whose statistics is given by P (7]6)

e Shannon’s mutual information

7— /dgp(e)/d'F’P('F’\@) log, (PP(?L?))

— Quantifies how much the uncertainty about the stimulus is reduced by the neural

response

e Fisher information

J(0) = / AP (70) (% log P(ﬂ9)>2

— Provides a lower bound on the variance of the error of any estimator of the stimulus

— For IV independent neurons, grows linearly with N (error decreases as 1/\/ N)



Chapter 2: Basic Neuron and Network Models.
Lecture 2

Rate Models



Firing rate models

e Describe population activity not in terms of individual neuron variables, but rather in

terms of average activity
e Useful to describe phenomena at the macroscopic or mesoscopic levels
e Population activity described by ordinary differential equations (ODES)

e Known under various names: neural mass model, firing rate model, rate model,

Wilson-Cowan model, neural field model



Simplest rate model

e Population activity () described by

dr(t)
dt

=—r(t)+ D (t)+ Jr(t))

T

e 7: time constant of firing rate dynamics
e O(.): static transfer function (f-1 curve)
e /(t): external input

e J: strength of synaptic connections within the population
— J > 0: excitatory network
— J < 0: inhibitory network

Amari 1972; Wilson and Cowan 1972



The transfer function ¢

Threshold linear ®(z) = [x — T+
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Rate models for local populations of neurons

e 7 subpopulations described by their average firing

rater;, 2 =1,...,n
d?”‘z'
Ti = —r;, + O, Ii‘|'zj:JijTj

e Example: E-I network (Wilson and Cowan 1972):

dTE
TEW
d?“[
T[E

= —rp+Pg (Igx + Jpere — JEI71)

—r;+®; (Irx + Jigre — Jrrr)




Analysis of rate models

d
o= —r 4+ ® (I + )

e Solve equations for fixed point(s):
ro = @I + Jrgp)

e Check linear stability of fixed point(s):

— A small perturbation dr around the fixed point obeys the linearized dynamics

: —1+ @’
57°:< il J)(Sr

T

— Compute eigenvalues A of the Jacobian matrix (—1 + ®'J)
— Fixed point stable if all eigenvalues have negative real parts
— "Rate” instability (saddle node bifurcation) when A = 0

— Oscillatory instability (Hopf bifurcation) when A = +iw and w # 0



Simplest case: One population, linear transfer function

d
Td—Z:—T+(]+JT)

e Unstable if J > 1 (rate instability)

e Perfect integrator if J = 1:

e Stableif J < 1:
T dr I

1—J)dt (1—J)

— Excitatory network (0 < J < 1): amplification of inputs, slow response

— Inhibitory network (J < 0): attenuation of inputs, fast response



Excitatory network: bistability
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e Excitatory rate model: I |
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E-l network: oscillations

e Excitatory-inhibitory network:

d?“E
B~ = ~TE +®r (Ugpx + Jegre — JEITT)
dry
TIE = —r1+®;Urx +Jrgre — Jrrry)

w

J
(9]

J
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Multiple inhibitory populations - winner-take-all

e Simplest case: two mutually inhibitory popula-

tions R
d
T% = —T1+(I)(Ix—JT2) B
d’l“g 19
T — e teUx—Jn)

e For strong enough external inputs, and J, can "

Rate

0.4

become bistable 0o

® |n both stable states, one population has a high 0
0 20 40 60 80 100 0O 02 04 06 038

Time rate of population 1

rate, the other a low rate

e "Winner-take-all” behavior



Spatially extended rate model (’neural field” model)

e Spatially extended rate model:

e 1 can refer to spatial location, or to preferred stimulus of a population of neurons
e r(x,t): firing rate of neurons at location x at time ¢
o [(x,t): external input

e J(|x — y|): weight of synaptic connections ("synaptic footprint”) between neurons at

locations o and y (or with preferred stimuli  and v)



The ring model

Inh. > Exc. Exc. > Inh.
e 1-D space with ring topology (orienta- S T 1T T

tion space): x € [—m, 7] i 7NV 1

Broad Inh. 5| i _]

e Threshold-linear transfer function, i 7\ A i

®(I) =Tl >0and ®(I) =0 RECTY EN S — |

otherwise - N\ AN

Broad Exc. -5 i —

e Synaptic footprint:

J(|z —y|) = Jo + Ji cos (z — y) L T e

e This model, or variants of it, have been proposed as models of V1 (orientation
selectivity), prefrontal cortex (spatial selectivity), head direction cells, place cells, grid

cells, etc.

Ben-Yishai et al. 1995; Hansel and Sompolinsky 1998



Analysis of the model

Thanks to the simplified transfer function and footprint, the dynamics can be written in terms of three order
parameters T (average activity), 1 (spatial modulation of the activity), and 1) (location of the peak

ro(t) = / d—mr(:c,t)dx

activity):

21

ri(t) = /;Z—ir(ac,t) cos(x — Y(t))dx

d
0 = / —xr(x, t) sin(x — 9 (t))dz
2T
These parameters evolve in time according to
: dx
ro(t) = —ro(t)+ / - 1(z)
2T
) dx
ri(t) = —ri(t)+ / 5 cos(z —¥(1))I(x)

I(z) = [I°"+ Joro(t) + Ji cos(z — ¥(t))r1(t)] .\



Phase diagram of the model

e Stationary uniform state characterized by
’I“Q(t) = RQ, r = w =0

e Stability analysis of stationary uniform state yields two
types of instabilities:
— Rate instability: Jy = 1
— Turing instability: J; = 2, leading to a "bump state”

e Bump states have been proposed to account for spatial
working memory in prefrontal cortex, and to account for
properties of head direction cells, place cells, and grid

cells

Rate
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Chapter 2: Basic Neuron and Network Models.
Lecture 3

Single Neuron Models



Neurons

e Traditionally viewed as the basic computational

units of the nervous system (’neuron doctrine”) \i ,

e Anatomically distinct cells with highly branched pro-

cesses emerging from soma (dendrites and axons)

e Dendrites = input, where vast majority of synaptic

contacts are made

e In mammalian CNS, each neuron has typically
thousands of synapses

e Axons = output, propagate action potentials to

postsynaptic neurons

e Neurons have been modeled at many different lev-

els of complexity, from binary neurons to models
described by thousands of ODEs



Hodgkin-Huxley (HH) model

e Describes the dynamics of the membrane potential, and variables describing
voltage-gated ionic currents

e Introduced by Hodgkin and Huxley in their pioneering 1952 papers

e Hodgkin and Huxley obtained the model from fitting electrophysiological recordings
from the squid giant axon

e HH formalism has been used to describe many more ionic currents than the two

originally described by Hodgkin and Huxley, in many different cell types



Hodgkin-Huxley model - current balance equation

e Dynamics of the membrane potential obeys current balance equation

dV
CE = I (V) —=Ino (V) —1Ig(V)

in which four types of currents appear:
dv
dt

e The capacitive current C due to electrical charges on the membrane

e The leak current I, (V') = g (V — V1) due to passive flow of ions through the

membrane

e The sodium current In (V') = gna(V)(V — Vi) due to voltage-dependent

opening of sodium channels inserted in the membrane

e The potassium current I (V') = g (V)(V — Vi) due to voltage-dependent

opening of potassium channels inserted in the membrane



Hodgkin-Huxley formalism - voltage-gated currents

e Fast sodium current

INna(V) = gnam’h(V — Vig)
dm
dh

Provides positive feedback on the voltage:

— When V increases, m increases (Na channels open)

— When Na channels open, Na ions enter the cell, leading to further
increase in V'

— h decreases more slowly, eventually closing the channels

o Delayed-rectifier potassium current
— 4
I (V) grn~ (V — Vi)

dn

—n — Noo (V)

Provides negative feedback on the voltage:
— When V increases, n increases (K channels open)

— When K channels open, K ions exit the cell, leading to a decrease
inV
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Putting everything together - the action potential in the HH model
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Hodgkin-Huxley model - outlook

e Hodgkin-Huxley model has been highly influential
— Allowed to understand mechanisms of action potential generation and propagation

— Formalism used to describe quantitatively many other ionic currents

e |ts complexity makes it difficult to analyze mathematically, as well as computationally

expensive

e What about simpler models?



From HH to two variable models

e Variable m is much faster than all other variables:
= m(t) = Mmoo (V)

e Dynamics of n and 1 — A are similar:
= h=1—n

e Gives a 2-D model:

dVv

0% = —g.(V=V1) = gna(V = Vno)m> (V)1 = n) — gen*(V — Vi)
dn
Tn(v)g = —n+ nm(v)

e Closely related models: Morris-Lecar; FitzHugh-Nagumo

e Can be analyzed using phase plane analysis (see chapter 3)



Leaky integrate-and-fire model

e Subthreshold dynamics (V' < V) keep only

capacitive and leak currents (Lapicque 1907):

dV
% _
m =, — - Is n
Tm V 4+ Lsyn (1)

e Spike emitted when V' = V}
e Then voltage resetto V' = V.

e (Optional) absolute refractory period of duration

e Vi, V,, and 7, replace Na and K currents in
HH model
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LIF: Pros and cons

® Pros

— Computationally cheap - it is easy to simulate networks of tens of thousands of LIFs

on a workstation)
— Analytically tractable, in the presence of constant as well as stochastic inputs

— Simple variants of LIF able to reproduce real neuron static transfer functions

e Cons
— Cannot reproduce many features observed in real neurons (subthreshold

resonance, bursting, firing rate adaptation, etc.)

e Simple extensions of the LIF model: try to get the best of both worlds (simplicity, ability
to capture diversity of behaviors of real neurons)



Nonlinear integrate-and-fire models

e Spike generation dynamics captured by a nonlinear function of voltage

av

Tm% — _(V - VL) + ¢<V) + Isyn(t)

e When 1 is supralinear, voltage diverges to infinity in finite time whenever the synaptic

inputs exceed some threshold
e Time of divergence defines spike time in such models

e Popular choices of 1:
— Quadratic integrate-and-fire (QIF)

1

P(V) = E(

V-V +(V-Vy)—1Ir

— Exponential integrate-and-fire (EIF)

(V) = Arexp (V — VT)

Ar



Nonlinear integrate-and-fire models (cont.)

e EIF describes best spike initiation in HH

models

e EIF describes best |-V curves of cortical

pyramidal cells and interneurons

| | |
'8955 460 465 470

Fourcaud-Trocmé et al. 2003; Badel et al. 2008



Adaptive integrate-and-fire models

e Add a second variable coupled to the voltage
e Second variable can be driven by voltage itself, by spikes, or by both

e Models in this family:
— LIF + voltage-driven variable = generalized LIF, resonate-and-fire
— LIF + spike-driven variable = adaptive LIF
— QIF + (v&s) driven variable = |zhikevich model
— EIF + (v&s) variable = refractory EIF (rEIF), adex, adaptive EIF

Richardson et al. 2003; Izhikevich 2003; Brette and Gerstner 2005; Badel et al. 2008



Firing patterns in adaptive integrate-and-fire models

e Adaptive NLIF models can gener-

ate a wide diversity of firing pat-

terns: 59 50
E 4 40
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Binary neurons

e Neurons described by binary variables S;(t) = 0, 1 depend on inputs h; () ("local
fields”):

hi(t) = Lix + Y Ji;S;(t)
JF#i
e Update rules: specify how .S;s are computed from h;s

— Synchronous updates: define a time step dt and a threshold 7T’

* Deterministic case:

S =S00 D=\

* Stochastic case:

1 with probability ¢(h;(t))

Si(t + dt) =
0  with probability 1 — ¢(h;(t))



— Asynchronous updates: can happen at any time, with transition rates

w(S;(t) =0— S;(t) =1) = M
w(S;(t)=1— S;(t) =0) = 1 — qﬁihi(t))

— @ sigmoidal function (monotonically increasing from 0 to 1)

1

M) = T ep(—Ba 1))

where (3 is analogous to an inverse temperature



Summary - which model neuron to choose?

e To understand biophysical mechanisms: Hodgkin-Huxley type models

e |n some conditions, HH type models can be reduced to/approximated by much simpler
models

e These simpler models are more amenable to mathematical analysis and

computationally cheaper

e LIF-type neurons can reproduce surprisingly well the f-I curve of real neurons, or even

the full spike trains of neurons, when simulated by random fluctuating currents

e Binary neurons have been fundamental to understanding the dynamics of various types

of networks, such as associative memory models
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Overview of a synapse

e Action potentials traveling along the ax-

ons reach axon terminals (presynaptic .
(presynap Axon terminal

boutons)
. L Synaptic vesicles \\

e Resulting depolarization leads to cal- N

N _ 7
cium influx through Ca channels { Synaptic Cleﬁ\i ¢
N 11‘(3 o © ® 3
e Calcium influx causes vesicles to fuse 5 “*%6-233 % @
I \’S"@;Q o) A
onto the membrane and release neuro- L R \_ o
transmitters J
e /Post synaptic receptors

e Neurotransmitters diffuse in the synap- (””

tic cleft and bind with receptor channels Dendritic spine

located on the membrane of postsynap-

tic neuron

e Receptor channels open, causing ion

influx into the postsynaptic cell



Models of single synapses

e Networks of binary neurons: synapses are described by a single number, the synaptic
efficacy
e Networks of spiking neurons: models of synapses are characterized by
— Time course
— Voltage dependence
— History dependence

— Degree and nature of stochasticity



Time course

e Synaptic currents elicited by spikes of neuron

at times t;“? can be written as

t)OCZS(t_t?) |
k

° S(t): time course of an individual postsynaptic

current (PSC) triggered by a spike attime t = 0 B

e Popular choices of S(t) in network studies:

— Delayed delta function

S(t) x 6(t — D)

— Instantaneous jump, exponential decay k N\I\ k \Ik

S(#) o exp(—t/7)0 (1
— Difference of exponentials (DOE) k M (\K M

S(t) oc [exp(—t/7s)—exp(—t/m)]O(t) ° T|m1e5?ms) 200 250
— Delayed DOE

S(t) o (exp(—(t—D)/7s)—exp(—(t—D)/7))O(t—D)



Voltage dependence

e Current-based models:

Li(t)=J) S(t—th)
e Conductance-based models:

Iij(t) = g(V (1) = Viyn) Y S(t — 15)

k
where
— g = synaptic conductance
— Vsyn — synaptic reversal potential
Typical values of reversal potential
— Excitatory synapses: Vg, ~ 0 mV
— Inhibitory synapses: Vs, ~ —70 mV
e \oltage dependence of NMDA-mediated currents:
1

V) ~
gnarpa(V) 1 + exp(—0.062V)[Mg2+]/3.57



History dependence

e Synaptic strength is a function of the history of pre- and postsynaptic activity on many

different time scales

e Short-term synaptic plasticity describes dynamics on ms-s time scales
— Short-term depression

— Short-term facilitation

e |ong-term synaptic plasticity describes dynamics on longer time scales (see chapter 6)



Tsodyks-Markram model for short-term depression

In between spikes e Model describes two pools of vesicles, those that are
@ @ available for release (A), and the refractory ones (R)
- e Fraction of available vesicles x obey

dx 1 —=x
— = —U$Z5(t_tk)

dt
Spike e 1 — fraction of used vesicles by a presynaptic AP
1-u
u ® Tp = recovery time constant
@ e Postsynaptic current proportional to ux
Tsodyks and Markram 1998
0 1 50 250 300

Time (ms)



Stochastic nature of synaptic currents

—> Quantal model (Katz and collaborators, 1950s):
e NV releasable vesicles (release sites)
e p: probability of release of a vesicle (quantum)
® (: postsynaptic response induced by a single released vesicle

e Distribution of responses given by binomial distribution

P(I =gn)=Cplp"(1—p)N "
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Networks

e Set of NV neurons

e Connected through (directed) synap-
tic connectivity matrix J;; (efficacy of

synapse from neuron 7 to neuron 1)

e Some or all neurons may receive exter-

nal inputs




Feedforward networks

e Feedforward networks
— contain no feedback loops

— Often arranged as a series of layers,
with connections from one layer to

the next

— model networks in sensory systems
(early visual system), cerebellar cor-
tex, etc.

Lt




Recurrent networks

e Networks with feedback loops

e All neurons potentially connected to all

other neurons

e Used to model networks in neocor-
tex and hippocampus in which neurons

connect extensively to nearby neurons




Networks of binary neurons

e N neurons
e Neurons described by binary variables S;(t) = 0, 1
e Depend on inputs h; () ("local fields”):
hi(t) = Iix + Z Ji;S;(1)
J7#1
e Update rules: specify how .S;s are computed from h;s

— Synchronous updates: define a time step dt, and a threshold 1T

* Deterministic case:

Si(t + dt) = O(h(t) — T) =



* Stochastic case:

1 with probability ¢(h;(t))

Si(t+dt) =
0  with probability 1 — ¢(h;(t))

— Asynchronous updates: with transition rates

w(S;(t) =0— S;(t)=1) = w
w(Si(t) =1 Si(t)=0) = = ¢§hi(t))

— ¢ sigmoidal function (monotonically increasing from 0 to 1)

1

Plx) = 14 exp(—B(x—1T))

where (3 is analogous to an inverse temperature



Networks of binary neurons - the symmetric case

e Symmetric network .J;; = J;; for all 2 # j, with no self-coupling (autapses) J;; = 0
J J

for all 2
e One can define an energy function (or Lyapunov function)
1
B(Sy,....8x) = =5 ) JiSiSj— ) (lix = T)S,
JF#u i

e At zero temperature (8 — 00), starting from any initial condition, £ decreases

monotonically toward a local minimum

e The equilibrium probability of any state (Sl, Cee SN) is given by the Boltzmann (or
Gibbs) distribution
1
P(Sl, ceey SN) — E exXp (—5E(Sl, ceey SN)) ,

where Z =} 5 5. exp(—BE(S1,...,Sn)) is the partition function



The Hopfield (1982) model

e N binary neurons (S;(t) = +1)
e Update rule:

Si(t+ 1) = sign Z Ji;S;(t)

J

e p random patterns ffb are "memorized” thanks to synaptic matrix

1

Jij = & > ey
v’
e Energy function:
N
1
E=—3 > JiS:S;

i,j=1

e “Retrieval states” close to stored patterns if p < Pmaz ~ 0.14N

® Dmax Can be computed using methods from statistical physics (Amit, Gutfreund, and
Sompolinsky 1985)



Models with sparse memories

e Generalization to storage of patterns of arbitrary "coding
levels”: Tsodyks and Feigel’'man (1988)

e N binary neurons (S;(t) = 0, 1)

e Neuron dynamics:

Neuron

Sit+1) =0 Ji;Si(t) - T

e p "memory states” £/ = 1 with probability f (coding

level), 0 with probability 1 — f OF— 71T 71 771 1
0O 50 100 150 200 250
e Synaptic matrix = covariance rule Time

1 mo_ mo_
Ji =TI FIN %j(@ N = )

e Selective neurons exhibit persistent activity following presentation of one of the stored patterns

e See Fusi and Wang (chapter 11) for a description of more realistic models



Balanced networks

e Ny E neurons, N | neurons

e Random sparse connectivity matrix: each neuron receives on average
— K external E inputs
— K < Ng E recurrent inputs
— K < Ny linputs

e Strong coupling: coupling strengths Jup ~ 1/V K



Irregular firing in balanced networks

e Total excitatory inputs and total in-
hibitory inputs diverge as v K in the
large K limit

e Total inputs stay finite in this limit due

Neuron

to a cancellation of leading order term

(balance between excitation and inhibi-

ion) [ e
o o O 7171 7 71 7
e Fluctuations in inputs remain finite in 0 20 40 60 80 100

large K limit Time

e Neurons fire highly irregularly as a result of large fluctuations in inputs
e Accounts for irregularity of firing of neurons in cortex

e Also leads to broad distributions of firing rates

van Vreeswijk and Sompolinsky 1996, 1998



Networks of spiking neurons - asynchronous and synchronous states

Networks of spiking neurons can settle in asynchronous or synchronous states, depending
on parameters
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