
Lecture 21.2 Exercises 

The scripts are subdivided into cells using the %% comment sign. Cells can be run separately by clicking 

them and hitting Ctrl-Enter. Note: these scripts use the function fig to create figures and set default text 

sizes etc. 

21.2.1 Covariance Learning 

SpectralBasis 

Here the input on the parallel fibres consists of a 1 sec sample of the first nf = 50 harmonics of a sine 

wave with frequency f = 1/2.  Some of these harmonics are plotted in Figure 21.4. 

The output to be reconstructed by the Purkinje cell is a 1sec castle shaped response, plotted in Figure 2 

of the text. 

TimingBasis 

Here the inputs are the chaotic outputs of a recurrent neural net. This network serves as a reservoir (see 

the literature on reservoir computing) supplying a complex basis capable of reconstructing many kinds 

of behaviour. 

Both the scripts implement covariance learning in batch mode 
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where the sum is taken over all time steps in the 1sec sample. Since all the PF inputs are stored in the 

columns of the nt x nf matrix p the sum can be calculated in vectorised form as p’*e 

It plots the current output at every step so that the progress of learning can be visualised. You can 

comment this section out for efficiency. 

Optimal Reconstruction 

Since this is a linear approximation problem we have access to the optimal solution which we can use to 

assess the success of the learning algorithm. The next section of code calculates the optimal 

reconstruction as the least squares solution of the system of equations 

P*w=zd 

In MatLab this is best obtained using the backslash operator 

w = P\zd 

 

1. Change nf to show that larger bases give more accurate reconstructions. Note the problem in 

accurately fitting the discontinuities even for very large nf. If you are interested in this ask your 

instructor about Gibb’s phenomenon. 



 

2. Change the desired output to something more biologically plausible (e.g. learn to produce a 

Gaussian response with a specific width and delay). 

 

21.2.2 Stochastic Learning 

NoiseCancel 

The code inputs a sample of music and contaminates with a sinusoidal signal. In a real problem this 

signal would have known frequency, but unknown amplitude and phase. 

Since we know the contaminating frequency we can cancel the noise using a combination of sine and 

cosine waves in the correct combination, hence the input on the parallel fibres consists of these two 

signals. 

Stochastic Learning 

The script implements covariance learning in continuous (stochastic) mode using only one pass through 

the data 
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It plots the current output every so often during learning so that the progress of learning can be 

visualised. You can comment this section out for efficiency. The learned filter is applied to the data on a 

second pass to assess the quality of learning. 

 

1. Try other noise sources, for example you could record your own voice and contaminate the 

music signal with an unknown amount of this signal. 

 

2. In the simulation the learning rate is set to be very low so that you can visualise the progress of 

learning. What is the fastest stable learning rate that you can use? 

 

3. Examine what happens if you use a slightly incorrect frequency for the predictor signals (don’t 

be too ambitious at first, try, say, f =440.5 rather than the correct 440Hz) . You should find that 

for a fast enough learning rate the weights learn quickly enough to track the changing phase 

difference due to the incorrect frequency and give reasonable noise cancelation. This ability to 

track a changing world is one of the advantages of an adaptive filter. 

 


