
Lecture 8.2 Exercises 

8.2.1 Hodgkin-Huxley (HH) lamprey segmental oscillator model (Andrej Bicanski) 

These exercises should familiarize the student with the following concepts. A mechanistic model of spike 

frequency adaptation via intracellular calcium and calcium dependent potassium channels. The use of 

HH models to simulate pharmacological effects (one of the benefits of using as complex a model as the 

present one). Slow and fast oscillatory subsystems. Intrinsic versus network mediated oscillations, i.e. 

tonically spiking neurons vs. pacemaker neurons (here dependent on the mode of stimulation, AMPA vs 

NMDA), or escape vs. release from inhibition as network mechanisms for oscillations. 

1. Write a short Matlab script which calls the neuron model (m-file callnetwork.m) repeatedly, 

simulating a single neuron, each time with an increased input current. 

a. Measure the inter-spike-interval between the first and second, the second and third and 

between the last two spikes of a 2 second spike train. Plot the frequency-current (FI) 

curves similar to Figure 8.6D of chapter 8. 

 

b. Reduce the strength of the after-hyperpolarization current by increasing value of the 

5HT variable (simulating the effect of serotonin on the network) and observe the 

changes to the FI curves. 

 

c. Pick one input current and plot the calcium concentration ([Ca]_[AHP}) over time, with 

and without a moderate 5HT level. How do they compare and why? Consider why the 

calcium concentration over time differs despite the fact that in both cases the inflow 

and decay rates for the intracellular calcium are the same. 

 

d. D: Gently change the values of the variables rhoAP and deltaAP, controlling calcium 

inflow and decay (m-file HHneuron_Wallen1992.m) and observe the effect on the FI 

curves and the calcium concentration. Compare your observations with C. 

 

2. The NMDA based calcium subsystem in the model acts on a slower time scale as compared to 

the calcium which flows into the cell with each action potential (see exercise 1). Test the 

capability of the model to reproduce NMDA induced oscillations. 

a. Run the HH model (m-file callnetwork.m) in single neuron mode, driven by an NMDA 

bath strength of 1.0, 2.0 and 3.0 units. Repeat the simulations with a TTX block of action 

potential generation, simulating the action of a pharmacological agent. 

 

b. Gently change the values of the variables rhoNMDA and deltaNMDA controlling calcium 

inflow and decay (m-file HHneuron_Wallen1992.m) and observe the effect on NMDA 

induced oscillations (with and without TTX blockade). 

 

c. Why do the oscillations have a higher frequency in one of the two cases (TTX vs. no 

TTX)? Consider all factors which contribute to the hyperpolarization at the end of 



burst/plateau. Note that the fact that the two calcium pools (action potential related 

(exercise 1) and NMDA receptor related (exercise 2)) are modeled separately relies on 

the notion that their sources (the respective calcium channels) are far apart on the cell 

membrane. If this is not the case the slow and fast calcium systems would interact 

through a joint calcium pool in addition to their indirect interaction through the effect of 

separate calcium pools on membrane potential dynamics. 

 

3. Test the effects of AMPA and NMDA baths on the whole network. Examine how network 

oscillations can be generated with release or escape from inhibition. 

a. Run the HH model (m-file callnetwork.m) in network mode at three AMPA bath 

concentrations (2.0, 3.5, 5.0). Record and plot the membrane potential for all neurons in 

the network and compare the frequency of the network oscillation. 

 

b. Remove the contribution of LIN neurons (e.g. by setting their connection weights to 

zero) and observe their contribution to burst termination at strong AMPA stimulation 

levels (>4.0). 

 

c. Run the HH model (m-file callnetwork.m) in network mode at an AMPA bath 

concentration of 3.0 units with 3 different levels of 5HT (0, 0.25, 0.5) and observe the 

neuromodulatory effect on network frequency. 

 

d. Run the HH model (m-file callnetwork.m) in network mode at three NMDA bath 

concentrations (1, 2, 3). Record and plot the membrane potential for all neurons in the 

network and compare the frequency of the network oscillation. 

 

e. Sever the link between left and right hemi-segments of the segmental network by 

setting the contralateral inhibitory synaptic connection weight to zero, and run the 

model in network mode, once with an AMPA bath strength of 3.5 units, once with a 

NMDA bath strength of 2 units. What is the main qualitative difference and why? 

 

 

8.2.2 Oscillator-based model of the salamander CPG (Jeremie Knuesel) 

1. Running the CPG model in Matlab 

Here we will see how to use the provided code for an oscillator-based model of the salamander 

CPG. The Matlab function in 'salam_cpg_osc.m' implements the model itself. Simulation results 

can be rendered in a plot similar to Fig. 2 of the paper (Ijspeert et al. 2007) using the Matlab 

function in 'plot_salam_cpg.m'. The inputs and outputs of these two Matlab functions are 

described at the beginning of the respective files. 

 



a. Pick a CPG drive strength in the range corresponding to the swimming behavior. (The limb 

oscillators saturate for drive levels above 3, while body oscillators saturate for drive levels 

above 5. Swimming occurs when only the limb oscillators saturate.) 

 

b. Using this drive strength, run a 20 seconds simulation of the CPG activity with a timestep of 

0.01 seconds. Record the output of the CPG oscillators, along with their instantaneous 

frequencies. 

 

c. Plot the outputs of the body and limb CPG oscillators, together with the oscillators' 

instantaneous frequencies. 

 

d. Repeat steps a,b,c using a drive strength corresponding to the walking behavior. (Walking 

occurs when neither the limb nor body oscillators saturate.). Observe the differences to the 

swimming case. 

 

e. Repeat steps a,b,c using a non-constant, linearly increasing drive strength covering both the 

walking and swimming behaviors. Observe the walking-swimming transition on the plot. 

Solution: 

a. We can pick e.g. a drive strength of  3.7 

b.   times = 0:0.01:20; 

[theta, r, x, dtheta] = salam_cpg_osc(times, 3.7); 

c. plot_salam_cpg(times, x, dtheta, 3.7); 

d. We can pick a drive between 1 and 3, for example 2.2: 

[theta, r, x, dtheta] = salam_cpg_osc(times, 2.2); 

plot_salam_cpg(times, x, dtheta, 2.2); 

Compared to the swimming case, the output of the limb oscillators is not flat, and the frequency 

of oscillations is lower. The synchronization pattern of the body oscillators has changed from a 

travelling wave to a standing wave. 

e. Let's generate a ramp of drive strengths between 0 and 6, sampling with as many values as we 

have in the 'times' vector: 

  drives = linspace(0, 6, length(times)); 

Then run the model with these drives and plot the result: 

  [theta, r, x, dtheta] = salam_cpg_osc(times, drives); 

  plot_salam_cpg(times, x, dtheta, drives); 



2. Issues with numerical modeling 

The outputs of the CPG model are calculated by numerical integration of the model's differential 

equations. The Matlab code in 'salam_cpg_osc.m' uses a simple Euler integration. The accuracy 

of the result increases as the integration timestep decreases (but the computations take more 

time and more memory). It is important to know if a simulation result is due to the properties of 

the model, or if it is an artefact due to the method of numerical integration which is always 

inexact. A simulation run with a large timestep can produce invalid results. To demonstrate this, 

repeat exercise 1e using a timestep of 0.05, and observe the consequences of using an 

excessively large integration timestep. 

Solution: 

  times = 0:0.05:20; 

  drives = linspace(0, 6, length(times)); 

  [theta, r, x, dtheta] = salam_cpg_osc(times, drives); 

  plot_salam_cpg(times, x, dtheta, drives); 

Some oscillations are still visible but with a lot of noise. One might conclude that the model 

generates noisy outputs, but the noise has nothing to do with the model, it is an artefact due to 

integaration errors caused by a bad choice of timestep. 

3. Initial conditions, unstable fixed points and robustness of convergence 

Any simulation based on differential equations requires a choice of initial conditions, i.e. the 

initial state of the model. The Matlab code in 'salam_cpg_osc.m' picks random initial conditions 

everytime the function is called. Ideally our CPG model would quickly converge to the expected 

oscillation pattern, regardless of the initial conditions. In practice it is possible to find particular 

values that leave the model stuck in a different oscillation pattern. This occurs when the model 

finds itself in the state of an unstable fixed point: the phase lags between oscillators remain 

constant instead of converging to the expected phase lags. This can happen due to the initial 

conditions, but also following a perturbation of the state variables. These unstable fixed points 

are properties of the model, and as described in section 1.2 of the supplementary materials of 

the article (Ijspeert et al. 2007), we can remediate this by introducing some randomness in the 

integration step. 

a. Repeat exercise 1e, running the model and plotting the results several times with the same 

parameters. Observe how each time, the oscillations start at different phases, but the 

network always converges to the same rhythm: on the left side of the plot (walking 

behavior), the trunk and tail oscillators (blue and green respectively) oscillate in antiphase. 

 

b. Edit the file 'salam_cpg_osc.m'. Find where the initial values are defined to random values 

(the initial values are held in vector variables named 'theta0', 'r0' and 'r_dot0'). Change the 



code to initialize all values to zero instead. Run again the simulation and observe the new 

oscillation pattern: the trunk and tail oscillators are now in phase. The left forelimb and left 

hind limb (oscillators 17 and 19) are also now in phase. 

 

c. In the file 'salam_cpg_osc.m', find where the phase derivatives are calculated at every 

integration step (they are stored in the variable 'dtheta', calculated in the 'get_derivatives' 

function). Add a small random term to the calculation of every element 'dtheta(i)' (e.g. a 

random value uniformly distributed between -0.01 and 0.01). Run the model again and plot 

the results. Observe the oscillation pattern during the walking behavior: the oscillators are 

again in antiphase. The model is now more robust to bad initial conditions or perturbations. 

 

d. Undo the changes made in (b) to restore the random initial conditions. 

 

4. Playing with the model parameters 

The oscillation pattern produced by the model and the stability of the rhythm depend on the 

model parameters, in particular the weights and phase biases of the couplings and the intrinsic 

frequencies of the oscillators. Changing the values of these parameters and observing the 

results can give a better sense of what the parameters represent. 

Different values for the model parameters can also make numerical integration more difficult, 

requiring an adaptation of the integration timestep. 

Below are some suggestions of changes you can make to the model parameters. Feel free to 

experiment with other parameters or values! 

a. Edit the file 'salam_cpg_osc.m' and find where the coupling weights are defined. Change the 

coupling weights from limb to body oscillators (variable 'w_limb_axis') to a much larger 

value and repeat exercise 1e. With a value large enough (e.g. 300 instead of 30), the 

numerical integration produces noise instead of oscillations, as seen in exercise 2. Try 

adapting the integration timestep to produce valid results when using such large coupling 

weights. 

 

b. Change again the coupling weights from limb to body oscillators, this time using a lower 

value (e.g. 10, the same as for the other couplings). Repeat exercise 1e and observe how the 

oscillation pattern has changed: the couplings are now too weak to impose a standing wave 

on the trunk oscillators during the walking behavior (the trunk oscillators are no longer in 

phase, instead they produce a travelling wave, similar to the wave produced during the 

swimming behavior). 

 

c. Leave the value of 'w_limb_axis' at 10. In 'salam_cpg_osc.m', find where the saturation 

function is called to calculate the intrinsic frequencies of the body oscillators based on the 



drive strengths. Replace the value for 'c_nu_0' (originally 0.3) to something higher, such as 

2. This will increase the intrinsic frequencies of the body oscillators, as they will now start at 

2 Hz instead of 0.3 Hz for low drive strengths. Repeat exercise 1e and observe the effect of 

the limb-body couplings on the trunk oscillators. The limb oscillators have their original, low 

intrinsic frequencies. The body oscillators however now have much larger intrinsic 

frequencies. With such a difference between the limb and body oscillators, the weakened 

limb-body couplings fail to impose the slow limb frequency on the trunk. However, they do 

perturbate the trunk oscillators: their outputs are now aperiodic and unlike sines. When you 

are done, revert the coupling weights and saturation parameters to their original values. 

 

d. Try changing the phase biases and see how it affects the oscillation pattern. 


