Mobile Microrobotics

by Sitti

ISBN: 9780262364058 | Copyright 2017

Click here to preview

Instructor Requests

Digital Exam/Desk Copy Print Desk Copy Ancillaries
Tabs
Expand/Collapse All
Contents (pg. vii)
List of Figures (pg. xiii)
List of Tables (pg. xxvii)
Acknowledgments (pg. xxix)
1 Introduction (pg. 1)
1.1 Definition of Different Size Scale Miniature Mobile Robots (pg. 1)
1.2 Brief History of Microrobotics (pg. 6)
1.3 Outline of the Book (pg. 8)
2 Scaling Laws for Microrobots (pg. 13)
2.1 Dynamic Similarity and Non-Dimensional Numbers (pg. 14)
2.2 Scaling of Surface Area and Volume and Its Implications (pg. 17)
2.3 Scaling of Mechanical, Electrical, Magnetic, and Fluidic Systems (pg. 18)
2.4 Example Scaled-up Study of Small-Scale Locomotion Systems (pg. 21)
2.5 Homework (pg. 24)
3 Forces Acting on a Microrobot (pg. 27)
3.1 Some Definitions (pg. 28)
3.2 Surface Forces in Air and Vacuum (pg. 31)
3.2.1 van der Waals forces (pg. 32)
3.2.2 Capillary forces (surface tension) (pg. 35)
3.2.3 Electrostatic forces (pg. 39)
3.2.4 Comparison of general forces on micron scale (pg. 40)
3.2.5 Specific interaction forces (pg. 40)
3.2.6 Other geometries (pg. 42)
3.3 Surface Forces in Liquids (pg. 43)
3.3.1 van der Waals forces in liquids (pg. 43)
3.3.2 Double-layer forces (pg. 43)
3.3.3 Hydration (steric) forces (pg. 44)
3.3.4 Hydrophobic forces (pg. 44)
3.3.5 Summary (pg. 45)
3.4 Adhesion (pg. 45)
3.5 Elastic Contact Micro/Nanomechanics Models (pg. 46)
3.5.1 Other contact geometries (pg. 51)
3.5.2 Viscoelastic effects (pg. 53)
3.6 Friction andWear (pg. 54)
3.6.1 Sliding friction (pg. 54)
3.6.2 Rolling friction (pg. 55)
3.6.3 Spinning friction (pg. 57)
3.6.4 Wear (pg. 57)
3.7 Microfluidics (pg. 58)
3.7.1 Viscous drag (pg. 59)
3.7.2 Drag torque (pg. 60)
3.7.3 Wall effects (pg. 60)
3.8 Measurement Techniques for Microscale Force Parameters (pg. 61)
3.9 Thermal Properties (pg. 64)
3.10 Determinism versus Stochasticity (pg. 65)
3.11 Homework (pg. 65)
4 Microrobot Fabrication (pg. 69)
4.1 Two-Photon Stereo Lithography (pg. 71)
4.2 Wafer-Level Processes (pg. 75)
4.3 Pattern Transfer (pg. 76)
4.4 Surface Functionalization (pg. 79)
4.5 Precision Microassembly (pg. 80)
4.6 Self-Assembly (pg. 80)
4.7 Biocompatibility and Biodegradability (pg. 81)
4.8 Neutral Buoyancy (pg. 82)
4.9 Homework (pg. 83)
5 Sensors for Microrobots (pg. 85)
5.1 Miniature Cameras (pg. 86)
5.2 Microscale Sensing Principles (pg. 88)
5.2.1 Capacitive sensing (pg. 88)
5.2.2 Piezoresistive sensing (pg. 89)
5.2.3 Optical sensing (pg. 92)
5.2.4 Magnetoelastic remote sensing (pg. 93)
6 On-Board Actuation Methods for Microrobots (pg. 97)
6.1 Piezoelectric Actuation (pg. 97)
6.1.1 Unimorph piezo actuators (pg. 101)
6.1.2 Case study: Flapping wings-based small-scale flying robot actuation (pg. 103)
6.1.3 Bimorph piezo actuators (pg. 107)
6.1.4 Piezo film actuators (pg. 108)
6.1.5 Polymer piezo actuators (pg. 109)
6.1.6 Piezo fiber composite actuators (pg. 109)
6.1.7 Impact drive mechanism using piezo actuators (pg. 109)
6.1.8 Ultrasonic piezo motors (pg. 110)
6.1.9 Piezoelectric materials as sensors (pg. 110)
6.2 Shape Memory Materials-Based Actuation (pg. 111)
6.3 Polymer Actuators (pg. 113)
6.3.1 Conductive polymer actuators (CPAs) (pg. 114)
6.3.2 Ionic polymer-metal composite (IPMC) actuators (pg. 114)
6.3.3 Dielectric elastomer actuators (DEAs) (pg. 115)
6.4 MEMS Microactuators (pg. 116)
6.5 Magneto- and Electrorheological Fluid Actuators (pg. 118)
6.6 Others (pg. 119)
6.7 Summary (pg. 120)
6.8 Homework (pg. 120)
7 Actuation Methods for Self-Propelled Microrobots (pg. 123)
7.1 Self-Generated Gradients or Fields-Based Microactuation (pg. 123)
7.1.1 Self-electrophoretic propulsion (pg. 123)
7.1.2 Self-diffusiophoretic propulsion (pg. 126)
7.1.3 Self-generated microbubbles-based propulsion (pg. 128)
7.1.4 Self-acoustophoretic propulsion (pg. 129)
7.1.5 Self-thermophoretic propulsion (pg. 130)
7.1.6 Self-generated Marangoni flows-based propulsion (pg. 130)
7.1.7 Others (pg. 132)
7.2 Bio-Hybrid Cell-Based Microactuation (pg. 132)
7.2.1 Biological cells as actuators (pg. 133)
7.2.2 Integration of cells with artificial components (pg. 137)
7.2.3 Control methods (pg. 138)
7.2.4 Case study: Bacteria-driven microswimmers (pg. 139)
7.3 Homework (pg. 148)
8 Remote Microrobot Actuation (pg. 151)
8.1 Magnetic Actuation (pg. 151)
8.1.1 Magnetic field safety (pg. 154)
8.1.2 Magnetic field creation (pg. 155)
8.1.3 Special coil configurations (pg. 157)
8.1.4 Non-uniform field setups (pg. 157)
8.1.5 Driving electronics (pg. 158)
8.1.6 Fields applied by permanent magnets (pg. 159)
8.1.7 Magnetic actuation by a magnetic resonance imaging (MRI) system (pg. 160)
8.1.8 6-DOF magnetic actuation (pg. 161)
8.2 Electrostatic Actuation (pg. 162)
8.3 Optical Actuation (pg. 164)
8.3.1 Opto-thermomechanical microactuation (pg. 164)
8.3.2 Opto-thermocapillary microactuation (pg. 164)
8.4 Electrocapillary Actuation (pg. 165)
8.5 Ultrasonic Actuation (pg. 166)
8.6 Homework (pg. 167)
9 Microrobot Powering (pg. 169)
9.1 Required Power for Locomotion (pg. 170)
9.2 On-Board Energy Storage (pg. 171)
9.2.1 Microbatteries (pg. 171)
9.2.2 Microscale fuel cells (pg. 172)
9.2.3 Supercapacitors (pg. 174)
9.2.4 Nuclear (radioactive) micropower sources (pg. 174)
9.2.5 Elastic strain energy (pg. 175)
9.3 Wireless (Remote) Power Delivery (pg. 175)
9.3.1 Wireless power transfer by radio frequency (RF) fields and microwaves (pg. 175)
9.3.2 Optical power beaming (pg. 176)
9.4 Energy Harvesting (pg. 176)
9.4.1 Solar cells harvesting incident light (pg. 177)
9.4.2 Fuel or ATP in the robot operation medium (pg. 177)
9.4.3 Microbatteries powered by an acidic medium (pg. 177)
9.4.4 Mechanical vibration harvesting (pg. 178)
9.4.5 Temperature gradient harvesting (pg. 179)
9.4.6 Others (pg. 179)
9.5 Homework (pg. 180)
10 Microrobot Locomotion (pg. 181)
10.1 Solid Surface Locomotion (pg. 182)
10.1.1 Pulling- or pushing-based surface locomotion (pg. 182)
10.1.2 Bio-inspired two-anchor crawling (pg. 185)
10.1.3 Stick-slip-based surface crawling (pg. 185)
10.1.4 Rolling (pg. 185)
10.1.5 Microrobot surface locomotion examples (pg. 186)
10.2 Swimming Locomotion in 3D (pg. 195)
10.2.1 Pulling-based swimming (pg. 196)
10.2.2 Flagellated or undulation-based bio-inspired swimming (pg. 197)
10.2.3 Chemical propulsion-based swimming (pg. 198)
10.2.4 Electrochemical and electroosmotic propulsion-based swimming (pg. 199)
10.3 Water Surface Locomotion (pg. 199)
10.3.1 Statics: Staying on fluid-air interface (pg. 200)
10.3.2 Dynamic locomotion on fluid-air interface (pg. 202)
10.4 Flight (pg. 204)
10.5 Homework (pg. 206)
11 Microrobot Localization and Control (pg. 209)
11.1 Microrobot Localization (pg. 209)
11.1.1 Optical tracking (pg. 209)
11.1.2 Magnetic tracking (pg. 209)
11.1.3 X-ray tracking (pg. 210)
11.1.4 Ultrasound tracking (pg. 211)
11.2 Control, Vision, Planning, and Learning (pg. 211)
11.3 Multi-Robot Control (pg. 214)
11.3.1 Addressing through localized trapping (pg. 214)
11.3.2 Addressing through heterogeneous robot designs (pg. 215)
11.3.3 Addressing through selective magnetic disabling (pg. 218)
11.4 Homework (pg. 222)
12 Microrobot Applications (pg. 225)
12.1 Micropart Manipulation (pg. 225)
12.1.1 Contact-based mechanical pushing manipulation (pg. 225)
12.1.2 Capillary forces-based contact manipulation (pg. 226)
12.1.3 Non-contact fluidic manipulation (pg. 227)
12.1.4 Autonomous manipulation (pg. 232)
12.1.5 Bio-object manipulation (pg. 232)
12.1.6 Team manipulation (pg. 234)
12.1.7 Microfactories (pg. 234)
12.2 Health Care (pg. 235)
12.3 Environmental Remediation (pg. 236)
12.4 Reconfigurable Microrobots (pg. 236)
12.5 Scientific Tools (pg. 240)
13 Summary and Open Challenges (pg. 241)
13.1 Status Summary (pg. 241)
13.2 What Next? (pg. 241)
Bibliography (pg. 245)
Index (pg. 269)

Metin Sitti

Metin Sitti is Director at the Max Planck Institute for Intelligent Systems, Stuttgart, and Professor of Mechanical Engineering at Carnegie Mellon University.


eTextbook
Go paperless today! Available online anytime, nothing to download or install.

Features

  • Highlighting
  • Bookmarking
  • Note-taking